
WWW .HADE S S . I OHADESS

 Zero-Day Vulnerability

Vulnerabilities

Plugins

TABLE OF CONTENTS

1

2

3

Introduction
We are excited to announce the launch of our 40 Vulnerabilities in 40

Days Campaign! Our goal is to raise awareness about the importance of

proactive vulnerability management and to encourage everyone to take

action to secure their systems.

HADESS

We believe that knowledge is power, and by

educating ourselves and others, we can help

make the world a safer place. Join us and

become a part of the 40 Vulnerabilities in 40

Days Campaign today!

Introduction ۰

Starting from March 1st, we will be showcasing

one vulnerability every day for 40 days, along

with details on how to detect and remediate it.

Our team of experts will be available to provide

insights and best practices, so you can learn

from real-world scenarios and understand the

impact of these vulnerabilities.

Zero-Day

HADESS

Zero-day vulnerabilities are particularly

dangerous because they can be used by

attackers before the vendor has had a chance to

release a patch or a fix for the issue. Attackers

can take advantage of these vulnerabilities to

launch targeted attacks, which can have serious

consequences, such as data theft, financial loss,

or reputational damage.

1

A zero-day vulnerability is a security weakness

in software or hardware that is unknown to the

party responsible for patching or otherwise

protecting the system. This vulnerability can be

exploited by attackers to conduct malicious

activities such as unauthorized access to

sensitive data, spreading malware, or disrupting

normal operations.

SECTION 1

Vulnerabilities List

HADESS

CVE-2022-45834 CSRF

CVE-2022-4367 CSRF

CVE-2022-4011 CSRF

CVE-2022-3941 CSRF

CVE-2022-4412 CSRF

CVE-2022-4411 CSRF

CVE-2022-4406 CSRF

CVE-2022-4405 CSRF

CVE-2022-4404 CSRF

CVE-2022-4528 CSRF

CVE-2022-4529 CSRF

CVE-2022-4530 CSRF

CVE-2022-4531 CSRF

CVE-2022-4532 CSRF

CVE-2022-4533 CSRF2

SECTION 1

CVE-2022-4534 CSRF

CVE-2022-4535 CSRF

CVE-2022-4536 CSRF

CVE-2022-4537 CSRF

CVE-2022-4538 CSRF

CVE-2022-4539 CSRF

CVE-2022-4540 CSRF

CVE-2022-4541 CSRF

CVE-2022-4550 CSRF

CVE-2022-46847 HTTP Header Injection

CVE-2022-4423 HTTP Header Injection

CVE-2022-4424 HTTP Header Injection

CVE-2022-4425 HTTP Header Injection

CVE-2022-4443 HTTP Header Injection

CVE-2022-47171 HTTP Header Injection

CVE-2022-47163 HTTP Header Injection

CVE-2022-47162 HTTP Header Injection

CVE-2022-47159 HTTP Header Injection

CVE-2022-47155 HTTP Header Injection

CVE-2022-47154 HTTP Header Injection

CVE-2022-47152 HTTP Header Injection

CVE-2022-47147 HTTP Header Injection

CVE-2022-47138 HTTP Header Injection

CVE-2022-47141 HTTP Header Injection

CVE-2022-47143 HTTP Header Injection

CVE-2022-47139 HTTP Header Injection

CVE-2022-47135 HTTP Header Injection

V
ul

ne
ra

bi
lit

ie
s L

is
t

3

Import/Export
42.3%

User Management
23.1%

CMS
15.4%

Calendars
9.6%

Book
9.6%

CVE-2022-47448 HTTP Header Injection

CVE-2022-47447 HTTP Header Injection

CVE-2022-47440 HTTP Header Injection

CVE-2022-47446 HTTP Header Injection

CVE-2022-47443 HTTP Header Injection

CVE-2022-47422 HTTP Header Injection

CVE-2022-4549 HTTP Header Injection

CVE-2022-4548 HTTP Header Injection

CVE-2022-47427 HTTP Header Injection

V
ul

ne
ra

bi
lit

ie
s L

is
t

Plugins Type

CSRF

H
TT

P
HE

ADER IN
JECTION

4

HADESS

5

CSRF Vulnerability

Example request:

Vulnerable Code:

HADESS

The displayed code snippet is used in WordPress and can save the information in

the CSV file to the WordPress database. After filling the WordPress form with the

required information, the code connects to the WordPress database and stores

the information in the CSV file in the desired table of the WordPress database. This

code also has a special value "update_db" which, if checked, will update the data

in the CSV file instead of creating a new record. If no records have been updated, a

success message is displayed. But if there is a problem connecting with the

database, an error message will be displayed.

CSRF Protection Parameter

6

One of the useful methods to prevent CSRF vulnerability in the development of WordPress

plugins is to use unique tokens. To use this method, you need to use tokens in your plugin

development code that are uniquely added to the form. For example, you can use the form

author token.

HADESS

For example, in the code below, the form author token is added as a variable containing a random

value in the form:

7

You can also use change tokens like time token. For example, you can add a time token like this:

In the code below, the token of the form author is checked after submitting the form, and if the

token is not correct, the form is considered invalid:

In the following code, the time token is checked after submitting the form and if the token is

older than one minute, it considers the form invalid:

HADESS

You can also use WordPress framework features, such as the wp_verify_nonce class, to prevent

CSRF. Using the wp_verify_nonce class in the WordPress framework is a useful and advanced

method to prevent CSRF attacks.

The wp_verify_nonce class uses a random token that is generated on each new request and after

the form is submitted, the token is compared with the token submitted in the form.

To use the wp_verify_nonce class in the development of WordPress plugins, you can use the

following code:

8

 HTTP Header Injection

The displayed code attempts to obtain the IP address of the user requesting the page. This is

done by using different variables on the server side. This code can be useful for users who use

proxy or proxy server. Normally, the user's IP address is shown by default in a part of the

browser's address bar, but in some cases, the user's IP address can be hidden by using a proxy

or proxy server. The displayed code can obtain the user's IP address using the standard

HTTP_CLIENT_IP, HTTP_X_FORWARDED_FOR, HTTP_X_FORWARDED,

HTTP_FORWARDED_FOR and HTTP_FORWARDED. If none of these variables are available, the

IP address is considered invalid and the function returns an empty value.

Also, the filter_var function is used to check the correctness of the filtered IP address. If the IP

address is not valid, the function returns empty.

 HTTP Header Injection Methods

9

HADESS

10

A useful way to avoid http header injection vulnerability in WordPress plugin development is to

use wp_remote_get and wp_remote_post functions. These functions use the cURL library and

by default, the http header is also filtered in all the texts that are sent.

To use the wp_remote_get and wp_remote_post functions in the development of WordPress

plugins, you can use the following code:

HADESS

You can also use the wp_http_validate_url function to filter invalid entries.

The function checks whether the submitted URL is valid or not. If the URL is invalid, the

wp_http_validate_url function will return an error and you will not be able to execute your

code.

To use the wp_http_validate_url function in the development of WordPress plugins, you can

use the following code:

11

You can also use the esc_url_raw function to control Internet access. This function filters the

submitted URL and deletes it if the URL is invalid.

To use the esc_url_raw function in the development of WordPress plugins, you can use the

following code:

HADESS

Synchronizer token pattern: This involves adding a unique token to each form or request that is generated by the

server and passed to the client. The client must then include this token in all subsequent requests to the server, which

the server can then use to verify that the request was initiated by the user.

Same-Site Cookies: This is a flag that can be set on a cookie, which tells the browser to only send the cookie on

requests to the same domain that set the cookie. This makes it more difficult for a malicious website to perform a

CSRF attack, as it won't have access to the necessary cookies.

Referrer header check: This involves checking the value of the referrer header in each request to ensure that it was

sent from the same domain. This helps to prevent CSRF attacks that use methods such as image tags or JavaScript to

send requests.

CAPTCHA: A CAPTCHA can be used to require the user to prove that they are a human before performing a sensitive

action. This makes it more difficult for a malicious website to perform a CSRF attack, as it won't be able to complete

the CAPTCHA.

Use of Anti-CSRF libraries: Anti-CSRF libraries, such as the OWASP CSRFGuard, provide an easy-to-use solution for

protecting against CSRF attacks by automatically generating and validating tokens for each request.

Cross-Site Request Forgery (CSRF) is a type of security vulnerability that occurs

when a malicious website is able to trick a user's browser into sending a request

to another website, without the user's knowledge or consent. This can be used

to steal sensitive information or to perform unauthorized actions on behalf of

the user.

1.

2.

3.

4.

5.

Input validation: Ensure that all user-supplied data is properly validated and sanitized to prevent malicious data from

being included in HTTP headers.

Use secure encoding and decoding functions: Use secure encoding and decoding functions, such as HTML entities and

URL encoding, to ensure that special characters are properly handled.

Limit header size: Limit the size of HTTP headers to prevent excessive data from being included in the headers.

Use a web application firewall (WAF): A WAF can provide protection against HTTP header injection by detecting and

blocking malicious requests.

Keep software up to date: Ensure that all software, including web applications and the underlying operating system, is

kept up to date to address known vulnerabilities.

Regularly perform security testing: Regularly perform security testing, including penetration testing, to identify and

remediate vulnerabilities in your systems.

HTTP header injection is a type of security vulnerability that occurs when an

attacker is able to inject malicious content into HTTP headers. This can be used

to manipulate the behavior of web applications or to steal sensitive information.

To prevent HTTP header injection, it's important to follow these best practices:

1.

2.

3.

4.

5.

6.

12

HADESS

HADESS

Identified vulnerabilities were investigated

separately by the amount of installation and

test cases related to CSRF and HTTP Header

Injection vulnerabilities.

13

Also, the above chart is divided based on the

frequency of vulnerabilities detected in about

1000 checked plugins.

100 1000 10000 100000 1000000

75%

50%

25%

0%

Http Header Injection CSRF

Vulnerabilities Type

The type of vulnerability detected in plugins by the number of plugins installed

User Management Import/Export Calendars Book CMS

25

20

15

10

5

0

HADESS

Plugin Type

A vulnerability has been found for each type of plugin

CSRF آسیب پذیری

OUT OF 100 PLUGINS WITH
MORE THAN 1000 INSTALLS,

TWO ARE VULNERABLE.

Installation Count

PLUGINS WITH MORE THAN
1000 INSTALLATIONS HAVE

MORE THAN 10
VULNERABILITIES OUT OF

MORE THAN 40
VULNERABILITIES.

14

<1000 >=1000 >=10000 100000 1000000

80%

60%

40%

20%

0%

Other
98%

CSRF
2%

Checked plugins are divided based on the type of functionality and application of the plugin, as

well as the amount of installation and the amount of vulnerabilities detected in each package.

HADESS

HTTP Header
Injection

A plugin with +10000
installations was found in

 plugin list to be vulnerable
to http header injection

from 100 plugins

Impact

Any restriction on their
side could be removed per

vulnerability

15

Other
99%

CSRF
1%

Other
95%

CSRF
5%

0% 20% 40% 60% 80%

Patch

Unpatch

More than 80% of vulnerabilities are not patched after they are reported

Patch Time

HADESS

Manually/Automatically

Vulnerabilities are found using which method

100 1000 10000 100000 1000000

40%

30%

20%

10%

0%

Manually

20%

100 1000 10000 100000 1000000

50%

40%

30%

20%

10%

0%

Automatically

80%

No Problem Vulnerability

1 Wordpress CSRF Protection Misuse CSRF

2 Lack Input Validation CSRF

3 HTTP Header White-list HTTP Header Injection

Root-Cause

16

About Hadess

hadess_security

Savior of your Business to combat cyber threats
Hadess performs offensive cybersecurity services through infrastructures and software
that include vulnerability analysis, scenario attack planning, and implementation of
custom integrated preventive projects. We organized our activities around the
prevention of corporate, industrial, and laboratory cyber threats.

Contact Us

To request additional information about Hadess’s services, please fill out the form
below. A Hadess representative will contact you shortly.

Email:

Marketing@hadess.io

Phone No.

+989362181112

Company No.

982128427515

Website:

www.hadess.io

Fully assess your organization’s threat detection and response
capabilities with a simulated cyber-attack.

Penetration Testing | PROTECTION PRO

Fully assess your organization’s threat detection and response
capabilities with a simulated cyber-attack.

Red Teaming Operation | PROTECTION PRO

Identifying and helping to address hidden weaknesses in
your organization’s security.

RASP | Protect Applications and APIs Anywhere

Identifying and helping to address hidden weaknesses in
your Applications.

SAST | Audit Your Products

Hadess
Products and Services

ThirdEye | Attack Surface Intelligence
Find your company leakage and monitor attack vector.

۱۷

HADESS

Penetration Testing

Module-Based

Priority-Based

Target-Based

Penetration testing typically involves
a combination of several different
testing methods and techniques,
which can be grouped into different
modules. The specific modules used
in a penetration test will depend on
the goals and scope of the test, as
well as the systems and services
being evaluated.

The priority of a vulnerability during
a penetration test is determined by
the potential impact of the
vulnerability, if exploited, and the
likelihood of it being exploited.
Vulnerabilities that pose a high risk
to the target systems and services
are given a higher priority, while
those with a lower risk are given a
lower priority.

Penetration testing is a simulated
cyber attack performed on a
computer system, network, or web
application to evaluate its security
posture. The target of a
penetration test can vary based on
the specific needs and goals of the
organization.

۱۸

HADESS

Red Team Operation

Goal-Based

Hardening

OSINT

Asset-Based

Red team hardening is a technique used by red teams to evaluate an organization's security
posture by simulating attacks and attempting to exploit vulnerabilities. The goal of red team
hardening is to identify and remediate security weaknesses in an organization's systems,
processes, and people, so that they are better prepared to defend against real-world attacks.

OSINT (Open-Source Intelligence) is a valuable tool for red teams, as it provides them with
the ability to gather information about a target in a non-intrusive manner. Red teams use
OSINT to gather information about the target's infrastructure, personnel, systems, and
operations. This information can be used to identify potential weaknesses and
vulnerabilities that can be exploited during a penetration test or simulated attack.

The goal of a red team exercise is to simulate an attack on an organization's systems,
processes, and people to identify security weaknesses and vulnerabilities. Red teams use a
variety of techniques, including penetration testing, social engineering, and physical
security assessments, to test the effectiveness of an organization's defenses and to identify
areas where they can be improved.

Red team asset-based testing involves simulating an attack on a specific asset or group of
assets within an organization. The goal of this type of red team exercise is to identify
vulnerabilities in the targeted assets and to evaluate the effectiveness of the organization's
defenses in protecting those assets.

SAST (Static Application Security Testing) is a type of security testing that involves analyzing

the source code of an application, without actually executing the code, to identify potential

security vulnerabilities. SAST is performed early in the software development lifecycle, before

the application is deployed, and is typically integrated into the development process as part of

a DevSecOps approach.

۱۹

HADESS

 SAST

Attack surface management (ASM) is a security practice that involves reducing the attack

surface of an organization's systems and services, making them less vulnerable to cyber

attacks. The attack surface refers to the total number of potential entry points for an

attacker, including network interfaces, applications, services, and other elements of an

organization's technology infrastructure.

۲۰

HADESS

ASM

Secure coding is a software development practice that involves writing code that is free from

vulnerabilities and that follows best practices for security. The goal of secure coding is to

prevent security issues and vulnerabilities from being introduced into an application during the

development process.

۲۱

HADESS

Secure Coding

