XXEIn Openstach
nova 23.0.0

A

FOREWARD

OpenStack Nova is a widely used cloud computing platform that allows
users to create and manage virtual machines and other resources. As with
any complex software system, it is important to ensure that Nova is secure
and protected against malicious attacks.

Recently, a vulnerability was discovered in OpenStack Nova that could
potentially allow an attacker to gain unauthorized access to sensitive data
or take control of the system. This vulnerability underscores the
importance of ongoing vigilance and testing to identify and address

security issues as they arise.

ADVISORY

XXE in Openstack nova 23.0.0

Vulnerability XXE
Vendor Openstack
Module nova

CVE CVE-2021-29410
Version 23.0.0
Severity High

WWW.HADESS.I0

Page 0.6

A XXE in Openstack nova 23.0.0

Openstack Nova

OpenStack Nova is a core component of the OpenStack cloud computing platform
that provides virtual machines (VMs) as a service. It is responsible for managing and
provisioning compute resources in the cloud, including creating, scheduling, and
terminating VMs.

Nova is designed to be highly scalable and flexible, with support for multiple
hypervisors, including KVM, Xen, Hyper-V, and VMware. It also includes a robust API
that allows users to programmatically provision and manage VMs, as well as a web-
based dashboard for easy management and monitoring.

Some of the key features of Nova include:

e Multi-hypervisor support: Nova supports multiple hypervisors, allowing users to
choose the best option for their workloads.

e Autoscaling: Nova includes built-in support for automatic scaling of VMs based on
usage patterns and resource availability.

e High availability: Nova is designed to be highly available, with support for fault
tolerance and automatic recovery in the event of a failure.

e Live migration: Nova supports live migration of VMs, allowing them to be moved
between hosts without interrupting service.

e Security: Nova includes features such as network isolation and virtual machine

introspection to enhance security in the cloud.

Overall, OpenStack Nova is a key component of the OpenStack cloud computing
platform, providing a powerful and flexible way to manage and provision compute
resources in the cloud.

WWW.HADESS.I0 Page 1.6

A XXE in Openstack nova 23.0.0

What is XXE

XXE (XML External Entity) is a type of vulnerability that can occur in applications that
process XML input. It arises when an attacker can control the contents of an XML
document that is being parsed by an application, and can insert an external entity
reference to a file or resource located on a different system.

When the application parses the XML document, it may access the external entity and
include its contents in the output sent back to the user. This can allow the attacker to
view sensitive data, execute arbitrary code, or perform other malicious actions on the
vulnerable system.

To prevent XXE attacks, developers can implement secure coding practices, such as
using a restrictive XML parser configuration or validating XML input against a schema.
Additionally, web application firewalls and other security controls can help to detect
and block XXE attacks.

Vulnerability

Root Cause

By default, the XMLParser in Python does not disable the use of external entities,
which can make it vulnerable to XXE attacks. This means that if an attacker can
control the contents of an XML document that is being parsed by Python's
XMLParser, they may be able to include an external entity reference that points to a
file or resource on a remote system, and the XMLParser will process that external
entity, potentially leading to a security breach.

For example:

WWW.HADESS.IO Page 2.6

A XXE in Openstack nova 23.0.0

Available boolean keyword arguments:

attribute_defaults - inject default attributes from DTD or XMLSchema
dtd_validation - validate against a DTD referenced by the document
load_dtd - use DTD for parsing

no_network - prevent network access for related files (default: True)
ns_clean - clean up redundant namespace declarations

recover - try hard to parse through broken XML

remove_blank_text - discard blank text nodes that appear ignorable
remove_comments - discard comments

remove_pis - discard processing instructions

strip_cdata - replace CDATA sections by normal text content (default: True)
compact - save memory for short text content (default: True)

collect_ids - use a hash table of XML IDs for fast access (default: True, always True
with DTD validation)

resolve_entities - replace entities by their text value (default: True)

Vulnerable Code
nova/nova/virt/libvirt/migration.py

Here is an example of vulnerable code that uses the XMLParser in Python and is
susceptible to XXE attacks:

import xml.etree.ElementTree as ET
xml_data = ''’

<?xml version="1.0" encoding="UTF-8"7>
<|DOCTYPE foo [

<|ELEMENT foo ANY>

<|ENTITY xxXe SYSTEM "file:///etc/passwd">
1>

<foo> </foo>

1
2
3
!
5
6
1
8
9

o e
(S

root = ET.fromstring(xml_data)

WWW.HADESS.IO Page 3.6

A XXE in Openstack nova 23.0.0

In this example, the XML data contains an external entity reference to the
/etc/passwd file on the local system. When the XMLParser parses the XML data, it will
resolve the external entity and include the contents of the /etc/passwd file in the
resulting XML tree. This can potentially expose sensitive information to an attacker.

To prevent XXE attacks in this code, you can disable external entity resolution by
passing a custom parser to the ET.fromstring() function, like this:

import xml.etree.ElementTree as ET

1

2

3 xml_data =

4 <?¥xml version="1.0" encoding="UTF-8"7%>
5

&

7

<|DOCTYPE foo |
< | ELEMENT foo ANY>
<|ENTITY xxe SYSTEM "file:///etc/passwd">
g 1>
9 <foo> </foo>
1 *'"'
11
12 parser = ET.XMLParser(resolve_entities=False)
13 root = ET.fromstring(xml_data, parser=parser)

In this modified code, the resolve_entities parameter is set to False when creating the
custom parser, which prevents external entities from being resolved. This effectively
mitigates the XXE vulnerability in the original code.

To prevent XXE attacks in Python, you can use the defusedxml library, which provides
a drop-in replacement for Python's built-in XML libraries (including the XMLParser),
with XXE protection enabled by default. You can install the defusedxml library using

pIp:

1 pip install

Once installed, you can use the defusedxml library to parse XML documents with XXE
protection enabled, like this:

WWW.HADESS.IO Page 4.6

A XXE in Openstack nova 23.0.0

defusedxml .ElementTree import

parse(xml_string)
tree.getroot()

Alternatively, you can disable external entities in Python's built-in XMLParser by
setting the resolve_entities parameter to False, like this:

1l from xml.etree import
2

3 parser = ET.XMLParser(resolve_entities=False)

4 tree = ET.fromstring(xml_string,

By disabling external entities, you can prevent XXE attacks in your Python code.
However, it's important to note that this may not be sufficient on its own, and other
security measures may also be necessary to fully protect your application against XXE
attacks.

XXE Mitigations

There are several ways to prevent XXE attacks, including:

e Use a restrictive XML parser configuration: Developers can configure the XML
parser to disallow the use of external entities. This can prevent attackers from
including malicious files or resources in the XML input.

e Validate XML input against a schema: Developers can validate the XML input
against a schema that defines the structure and content of the XML document.
This can help to ensure that the input is well-formed and does not contain
unexpected or malicious elements.

WWW.HADESS.IO Page 5.6

A XXE in Openstack nova 23.0.0

* Use whitelisting: Developers can use a whitelist to explicitly allow only the
expected XML elements and attributes to be processed by the application. This
can help to prevent unexpected or malicious input from being processed.

e Filter user input: Developers can sanitize user input to remove any unexpected or
potentially malicious characters or elements. This can help to ensure that the XML
input is well-formed and safe to process.

* Implement web application firewalls: Web application firewalls can help to detect
and block XXE attacks by analyzing incoming traffic and blocking any requests that
contain suspicious or malicious input.

It's important to note that preventing XXE attacks requires a combination of secure
coding practices and security controls. Developers should also stay up-to-date with
the latest security advisories and best practices to ensure that their applications
remain secure.

WWW.HADESS.I0 Page 6.6

About Hadess

Savior of your Business to combat cyber threats

Hadess performs offensive cybersecurity services through infrastructures and software
that include vulnerability analysis, scenario attack planning, and implementation of
custom integrated preventive projects. We organized our activities around the
prevention of corporate, industrial, and laboratory cyber threats.

Contact Us

To request additional information about Hadess's services, please fill out the form
below. A Hadess representative will contact you shortly.

Website:
www.hadess.io
Email:

Marketing@hadess.io

Phone No.

+989362181112

Company No.

982128427515

hadess_security

00

Hadess
Products and Services

—> SAST | Audit Your Products

Identifying and helping to address hidden weaknesses in
your Applications.

— RASP | Protect Applications and APls Anywhere

Identifying and helping to address hidden weaknesses in
your organization'’s security.

— Penetration Testing | PROTECTION PRO

Fully assess your organization’s threat detection and response
capabilities with a simulated cyber-attack.

—> Red Teaming Operation | PROTECTION PRO

Fully assess your organization’s threat detection and response
capabilities with a simulated cyber-attack.

— ThirdEye | Attack Surface Intelligence

Find your company leakage and monitor attack vector.

Penetration Testing

\%

HADESS

-

Module-Based

Penetration testing typically involves
a combination of several different
testing methods and techniques,
which can be grouped into different
modules. The specific modules used
in a penetration test will depend on
the goals and scope of the test, as
well as the systems and services
being evaluated.

&

Target-Based

Penetration testing is a simulated
cyber attack performed on a
computer system, network, or web
application to evaluate its security
posture. The target of a
penetration test can vary based on
the specific needs and goals of the
organization.

Priority-Based

The priority of a vulnerability during
a penetration test is determined by
the potential impact of the
vulnerability, if exploited, and the
likelihood of it being exploited.
Vulnerabilities that pose a high risk
to the target systems and services
are given a higher priority, while
those with a lower risk are given a
lower priority.

HADESS

Red Team Operation

A

OSINT

OSINT (Open-Source Intelligence) is a valuable tool for red teams, as it provides them with
the ability to gather information about a target in a non-intrusive manner. Red teams use
OSINT to gather information about the target's infrastructure, personnel, systems, and
operations. This information can be used to identify potential weaknesses and
vulnerabilities that can be exploited during a penetration test or simulated attack.

Hardening

Red team hardening is a technique used by red teams to evaluate an organization's security
posture by simulating attacks and attempting to exploit vulnerabilities. The goal of red team
hardening is to identify and remediate security weaknesses in an organization's systems,
processes, and people, so that they are better prepared to defend against real-world attacks.

Goal-Based

The goal of a red team exercise is to simulate an attack on an organization's systems,
processes, and people to identify security weaknesses and vulnerabilities. Red teams use a
variety of techniques, including penetration testing, social engineering, and physical
security assessments, to test the effectiveness of an organization's defenses and to identify
areas where they can be improved.

Asset-Based

Red team asset-based testing involves simulating an attack on a specific asset or group of
assets within an organization. The goal of this type of red team exercise is to identify
vulnerabilities in the targeted assets and to evaluate the effectiveness of the organization's
defenses in protecting those assets.

HADESS

SAST

19

developer2

developer2

developer2

developer2

developer2

a8 o anyps

(oa

o i o unyp

s 3 load anyp

o d S Joad g

L

¥ aiipdy gz g Cuuz

2022-10-06
22:50

2022-10-06
22:49

2022-10-06
22:51

2022-10-06
22:50

2022-10-08
2251

mp 825,

93d2ef3d

eccBf20e

O4edab7f

dc967926

124a852a

SQL Injection

SQL Injection

SQL Injection

SQL Injection

SGAL Injection

e PP YRUN, P

Taad D caady

]

ik

sql2.php

sqil.php

sqi6.php

sql3.php

sqld.php

el daya

e
oxd Ly slo 5@ A

L ojg

w8 sl G le o puae

[PRUTTCIOR -

Sy, fR

Ls 59,52

Sl aushPIA

<l

SAST (Static Application Security Testing) is a type of security testing that involves analyzing

the source code of an application, without actually executing the code, to identify potential

security vulnerabilities. SAST is performed early in the software development lifecycle, before

the application is deployed, and is typically integrated into the development process as part of

a DevSecOps approach.

HADESS

ASM

Silnabis ey ol S Lt oS b s [T | g B A bl 3 padlils

3 jgasdils

L Endipoint | |5 3 laa5 L Sustssommain |5 3l 35 wilaal, 5 3lass

2 1,086 64 4

SIS (gl g g By i 0 gl gy 2 sy 0

8.3l gt s Uil g Ui ot 13 S iy
s gl da gk [ket gl o +adgo

Attack surface management (ASM) is a security practice that involves reducing the attack
surface of an organization's systems and services, making them less vulnerable to cyber
attacks. The attack surface refers to the total number of potential entry points for an
attacker, including network interfaces, applications, services, and other elements of an

organization's technology infrastructure.

HADESS

Secure Coding

] ‘JL"fw"u |

CASE.NET o)g2

1 Jajle

Secure coding is a software development practice that involves writing code that is free from
vulnerabilities and that follows best practices for security. The goal of secure coding is to
prevent security issues and vulnerabilities from being introduced into an application during the

development process.

!

HADESS.I0

