
XSS in

22 Jun 2023

Discovered by HADESS

HADESS WWW .HADE S S . I O

Modern Application
CVE-2022-46769

Executive Summary

hadess_security

Apache Sling is an open-source web framework based on the Java
Content Repository (JCR) technology. It is designed to enable
developers to create content-centric applications and provide a
RESTful framework for building web applications on top of the Java
platform. However, like any software, Apache Sling is not immune to
vulnerabilities, and one such vulnerability is Cross-Site Scripting (XSS).

In the case of Apache Sling, XSS vulnerabilities have been discovered
that could potentially compromise the security of applications built on
the framework. These vulnerabilities may allow attackers to inject
malicious scripts into Sling applications, leading to various security
risks. The discovery of XSS vulnerabilities in Apache Sling highlights the
importance of robust security practices and the need for regular
security audits and updates in software development.

Advisory
CVE ID: CVE-2022-46769

Root Cause: innerHTML, dangerously-set-html-content

Impact: Account Takeover

Prevention: Update to >= 1.1.4

Version: 1.1.2 and prior

01

Technical Analysis

Input Validation and Sanitization: Ensure that the title and

message variables are properly validated and sanitized.

Apply input validation techniques to verify the data's

expected format, type, and length. Sanitize the input to

remove or escape any potentially dangerous characters

before using them in the modal.

Output Encoding: Instead of directly injecting the title and

message variables into the HTML markup, use output

encoding techniques to ensure that special characters are

properly escaped. HTML encoding functions or libraries

should be used to encode the variables before inserting

them into the modal.

To perform a technical analysis for XSS, we need to consider

how the title and message variables are populated. If these

variables are derived from untrusted or user-controlled

sources without proper validation and sanitization, an attacker

could inject malicious scripts or HTML code, leading to an XSS

vulnerability.

To mitigate the risk of XSS, consider implementing the

following measures:

1.

2.

02

ui/src/main/resources/jcr_root/libs/sling-cms/components/cms/startcontent
/startcontent.jsp

```
<c:forEach var="item" items="${startContent.recentContent}">
                <a class="panel-block" title="${sling:encode(item.path,'HTML_ATTR')}"
href="/cms/site/content.html${item.parent.path}?resource=${sling:encode(item.path,'HTML_ATTR')}">
                    <span class="panel-icon">
                        <c:choose>
                            <c:when test="${item.resourceType == 'sling:Page'}">
                                <i class="jam jam-document" aria-hidden="true"></i>
                            </c:when>
                            <c:otherwise>
                                <i class="jam jam-file" aria-hidden="true"></i>
                            </c:otherwise>
                        </c:choose>
                    </span>
                    <c:choose>
                        <c:when test="${item.resourceType == 'sling:Page'}">
                            <sling:encode value="${item.valueMap['jcr:content/jcr:title']}" default="${item.name}"
mode="HTML" />
                        </c:when>
                        <c:otherwise>
                            ${item.name}
                        </c:otherwise>
                    </c:choose>&nbsp;&mdash;&nbsp;
                    <small><fmt:formatDate value="${item.valueMap['jcr:content/jcr:lastModified'].time}"
type="both" dateStyle="short" timeStyle="short" /></small>
                </a>
            </c:forEach>
```

Apache Sling XSS: CVE-2022-46769

WWW.HADESS.IO Page 4.11

Technical Analysis

Class: javax.servlet.jsp.jstl.core.LoopTagSupport (or a subclass)

This class provides the functionality for iterating over a collection of items using the <c:forEach> tag. It is
part of the JSTL (JavaServer Pages Standard Tag Library) core library.
Method: doStartTag() (in the LoopTagSupport class or its subclass)

This method is called when the <c:forEach> tag is encountered in the JSP template. It initializes the loop
iteration and prepares the necessary data for the iteration.
Variable: var="item"

This attribute of the <c:forEach> tag sets the loop variable name to "item". Within the loop, each
iteration assigns the current item from the collection to this variable.
Variable: items="${startContent.recentContent}"

This attribute of the <c:forEach> tag specifies the collection of items to iterate over. The value is
obtained from the startContent.recentContent variable.
Class: org.apache.sling.commons.html.HtmlRendererUtils

This class contains the sling:encode method, which is used to encode the item.path variable for safe
rendering in HTML attributes. It is part of the Apache Sling framework.
Variable: item.path

This represents the path property of the current item within the iteration. It is used in various places,
such as generating the title attribute and constructing the href attribute.
Variables: item.parent.path, item.resourceType, item.name, item.valueMap['jcr:content/jcr:title'],
item.valueMap['jcr:content/jcr:lastModified'].time

These variables contain properties and values associated with the current item in the loop. They are
used for constructing the HTML output, such as the href, icon, title, name, and last modified date.
Classes: javax.servlet.jsp.tagext.TagSupport, javax.servlet.jsp.tagext.SimpleTagSupport,
org.apache.sling.scripting.jsp.taglib.TagUtils, javax.servlet.jsp.JspException, etc.

These are various classes from the JSP and Apache Sling frameworks that provide tag support, utility
methods, exception handling, and other functionalities required for JSP rendering and tag processing.

WWW.HADESS.IO Page 5.11

Apache Sling XSS: CVE-2022-46769

WWW.HADESS.IO Page 6.11

```
                        <c:when test="${item.resourceType == 'sling:Page'}">
                            <sling:encode value="${item.valueMap['jcr:content/jcr:title']}" default="${item.name}"
mode="HTML" />
                        </c:when>
                        <c:otherwise>
                            ${item.name}
                        </c:otherwise>
```

To reproduce an XSS vulnerability in this code, you would need to manipulate the
item.valueMap['jcr:content/jcr:title'] property and inject malicious JavaScript code or HTML markup into
it. However, it's important to note that the code snippet alone does not directly expose an XSS
vulnerability.

Apache Sling XSS: CVE-2022-46769

WWW.HADESS.IO Page 7.11

The vulnerability would arise if the item.valueMap['jcr:content/jcr:title'] property is populated with user-
controlled input that is not properly validated or sanitized.

To assess the vulnerability, you would need to examine how the item.valueMap['jcr:content/jcr:title']
property is populated and determine if there are any potential sources of untrusted user input. If such
input is used without proper validation or encoding, it could lead to an XSS vulnerability.

The updated code snippet you provided demonstrates a patch for potential XSS vulnerabilities. In the
<c:otherwise> block, the item.name value is now passed through the sling:encode function with the
mode="HTML" attribute. This ensures that the item.name value is properly encoded before being
rendered in the HTML output.

By applying the sling:encode function with the mode="HTML" attribute, any special characters in the
item.name value will be appropriately escaped, reducing the risk of XSS vulnerabilities. This encoding
step helps ensure that user-controlled or potentially untrusted data is rendered safely within the HTML
output.

By updating the code to include this encoding step, you have taken a preventive measure against
potential XSS vulnerabilities by ensuring that the item.name value is properly sanitized and encoded
before being displayed.

Apache Sling XSS: CVE-2022-46769


```
<c:otherwise>
                            <sling:encode value="${item.name}" mode="HTML" />
                        </c:otherwise>
```

ui/src/main/frontend/js/cms.js

```
ui: {
    confirmMessage(title, message, complete) {
      const modal = document.createElement('div');
      modal.innerHTML = `<div class="modal-background"></div><div class="is-draggable modal-content">
<div class="box"><h3 class="modal-title">${title}</h3><p>${message}</p><br/><button type="button"
class="close-modal button is-primary">OK</button></div></div><button class="modal-close is-large"
aria-label="close"></button>`;
      document.body.appendChild(modal);
      modal.classList.add('modal');
      modal.classList.add('is-active');
      modal.querySelectorAll('.modal-close,.close-modal,.modal-background').forEach((closer) => {
        closer.addEventListener('click', () => {
          modal.remove();
          complete();
        });
      });
      modal.querySelector('.delete,.close-modal').focus();
      return modal;
    }
```

Method: confirmMessage(title, message, complete)

This method is defined within the ui object. It takes three parameters: title, message, and complete. It is
responsible for displaying a modal confirmation message with a title, message, and an OK button. The
complete function is invoked when the modal is closed.
Classes: document, Element, NodeList

These are built-in JavaScript classes that are part of the Document Object Model (DOM) API. They are
used to manipulate and interact with the HTML document and its elements.
Method: document.createElement('div')

This method creates a new <div> element in memory, which will be used as the modal container.
Property: modal.innerHTML

This property sets the HTML content of the modal element by assigning a string of HTML markup. The
string includes the modal structure with a background, content, title, message, and an OK button.
Method: document.body.appendChild(modal)

This method appends the modal element as a child of the <body> element in the HTML document,
thereby inserting the modal into the DOM.
Method: modal.classList.add(className)

WWW.HADESS.IO Page 8.11

Apache Sling XSS: CVE-2022-46769

WWW.HADESS.IO Page 9.11

This method adds the specified className to the classList of the modal element. In this case, it adds the
classes 'modal' and 'is-active' to enable the display of the modal.
Method: modal.querySelectorAll(selector)

This method returns a NodeList containing all elements that match the given selector within the modal
element. It is used to select the close buttons and modal background for event listeners.
Method: closer.addEventListener(event, callback)

This method attaches an event listener to each element in the NodeList (closer). When the specified
event (e.g., 'click') occurs on any of these elements, the callback function is executed.
Method: modal.remove()

This method removes the modal element from the DOM, effectively closing the modal.
Method: modal.querySelector(selector)

This method returns the first element that matches the given selector within the modal element. It is
used to select the close button or the element with the class 'close-modal' for focusing.

Apache Sling XSS: CVE-2022-46769


```
 modal.innerHTML = `<div class="modal-background"></div><div class="is-draggable modal-content">
<div class="box"><h3 class="modal-title">${title}</h3><p>${message}</p><br/><button type="button"
class="close-modal button is-primary">OK</button></div></div><button class="modal-close is-large"
aria-label="close"></button>`;
      document.body.appendChild(modal);
```

The provided code snippet for creating a modal dialog does not appear to have an immediate XSS
vulnerability. However, the potential for XSS vulnerabilities may exist if the title and message variables
are populated with user-controlled or unsanitized input.

To reproduce an XSS vulnerability in this code, you would need to manipulate the title and message
variables and inject malicious JavaScript code or HTML markup into them. However, it's important to
note that the vulnerability would depend on how these variables are populated.

If the title and message variables come from trusted sources or are hardcoded, the risk of XSS is
minimal. However, if these variables contain user input that is not properly validated or sanitized, an XSS
vulnerability can occur.

```
modal.innerHTML = `<div class="modal-background"></div><div class="is-draggable modal-content">
<div class="box"><h3 class="modal-title"></h3><p class="modal-message"></p><br/><button
type="button" class="close-modal button is-primary">OK</button></div></div><button class="modal-
close is-large" aria-label="close"></button>`;
      modal.querySelector('.modal-title').textContent = title;
      modal.querySelector('.modal-message').textContent = message;
```

The updated code snippet you provided demonstrates a patch for potential XSS vulnerabilities by
avoiding direct injection of the title and message variables into the HTML markup. Instead, it sets the
text content of specific elements within the modal using the textContent property, which automatically
escapes special characters, preventing XSS attacks.

By using modal.querySelector('.modal-title').textContent = title; and modal.querySelector('.modal-
message').textContent = message;, you are safely assigning the title and message values to the
respective elements in the modal, ensuring that any special characters are properly handled and
displayed as plain text.

This approach helps protect against potential XSS vulnerabilities by avoiding the direct rendering of
user-controlled or unsanitized input as HTML markup within the modal.

WWW.HADESS.IO Page 10.11

Apache Sling XSS: CVE-2022-46769

Conclusion

Input Validation and Sanitization: Validate and sanitize all
user-controlled input, including query parameters, form
data, and user-generated content. Use input validation
techniques to ensure the expected data type, length, and
format, and sanitize the input to remove or escape
potentially dangerous characters.

Output Encoding: Apply proper output encoding
techniques whenever user-controlled data is rendered in
HTML, JavaScript, or other contexts. Utilize encoding
functions or libraries specific to the output context (e.g.,
HTML encoding, JavaScript encoding) to escape special
characters and prevent interpretation as code.

Cross-Site Scripting (XSS) is a critical web application
vulnerability that can allow attackers to inject malicious
scripts or code into web pages viewed by other users. In the
context of Apache Sling, the code snippets provided did not
demonstrate immediate XSS vulnerabilities. However, it is
essential to take preventive measures to ensure the overall
security of the application.

Preventive Measures:
To mitigate the risk of XSS vulnerabilities in Apache Sling or
any web application, consider implementing the following
preventive measures:

03

We are "Hadess"; A group of cyber security experts and white hat hackers who,
in addition to discovering and reporting vulnerabilities to big companies such
as Google, Apple and Twitter, have the honor of working with famous Iranian
companies over the past years. Ayman Burhan Rehiaft Azarakhsh Cyber
Security Company provides its customers with integrated solutions in the field
of cyber security, with a deep insight and understanding of the software
development process as well as the development infrastructure.

HADESS
cat ~/.hadess

Email

MARKETING@HADESS.IO

Website:

WWW.HADESS.IO

Hadess Cyber Security Solutions is a renowned group of cyber security experts and white hat hackers. With a track record of discovering and responsibly reporting vulnerabilities to
prominent companies such as Google, Apple, and Twitter, Hadess has earned a reputation for excellence in the field of cyber security.

