
HADESS

TACFAM DB-120WL

WWW .HADE S S . I O

PWN

Executive Summary

hadess_security

This executive summary provides an overview of a critical code execution
vulnerability discovered in the TACFAM DB-120WL networking device. The
vulnerability allows remote attackers to execute arbitrary code on the device,
potentially compromising the entire network. The analysis covers various
aspects of the vulnerability, including technical details, exploitation process,
and potential impact. The following key points are highlighted:

Vulnerability Overview: The TACFAM DB-120WL device, a popular networking
solution, is affected by a severe code execution vulnerability in its firmware.
This vulnerability enables remote attackers to inject arbitrary code into the
device's memory, leading to unauthorized access and compromising the entire
network infrastructure.

Technical Analysis: The analysis provides a detailed examination of UART
communication, including its overview, parameters, and pin configuration. It
also explains the process of connecting UART to USB using TTL converters.
Additionally, the analysis explores the vulnerable areas within the device's
firmware, such as XSS vulnerabilities, misconfigurations, authentication bypass,
clear text password storage, CSRF to RCE, and buffer overflow.

Exploitation Process: The exploitation process involves crafting specially
crafted requests to the TACFAM DB-120WL device to exploit its insecure input
processing. By injecting malicious code into the device's memory, attackers
gain control over its functionalities, leading to unauthorized access, data
breaches, and complete device compromise.

Impact: The code execution vulnerability in the TACFAM DB-120WL device
poses significant risks, including unauthorized access, data breaches, and
compromise of sensitive information. Attackers can manipulate network
configurations, access restricted functionalities, and retrieve sensitive data
stored on the device.

Cover by Michael Gaslenko

https://www.artstation.com/michaelgaslenko

Advisory
The TACFAM DB-120WL device is a popular networking solution
widely used for wireless connectivity in homes and businesses.
However, a severe code execution vulnerability has been identified in
its firmware. This analysis aims to provide a detailed understanding of
the vulnerability, its implications, and recommend effective
countermeasures.

01

This comprehensive technical analysis delves into a critical code execution
vulnerability discovered in the TACFAM DB-120WL networking device. The
vulnerability allows remote attackers to execute arbitrary code on the device,
potentially compromising the entire network. This article provides an in-depth
examination of the vulnerability, its impact, and suggests potential mitigations to
protect users and organizations.

Page 4.22

TACFAM DB-120WL PWN

Abstract

WWW.HADESS.IO

The TACFAM DB-120WL device is a popular networking solution widely used for
wireless connectivity in homes and businesses. However, a severe code execution
vulnerability has been identified in its firmware. This analysis aims to provide a
detailed understanding of the vulnerability, its implications, and recommend
effective countermeasures.

Introduction

Technical Analysis

UART Communication: This section provides an overview of UART
communication, including its components, parameters, and pin
configuration. It also explains how to connect UART to a USB port using TTL
converters.

TACFAM DB-120WL Code Execution Vulnerability: This section discusses a
critical code execution vulnerability in the TACFAM DB-120WL networking
device. It explains how remote attackers can exploit this vulnerability to
execute arbitrary code on the device, potentially compromising the entire
network.

Exploitation Process: This section describes the process through which an
attacker can exploit the code execution vulnerability in the TACFAM DB-
120WL device by sending specially crafted requests to manipulate the
device's memory and inject arbitrary code.

XSS Vulnerability: The analysis explores Cross-Site Scripting (XSS)
vulnerabilities that may exist in the TACFAM DB-120WL device's firmware. It
explains how improper handling of user input can lead to the injection of
malicious JavaScript code into web pages.

Cleartext Password Storage Vulnerability: This section discusses the
security risk associated with storing passwords in clear text in the TACFAM
DB-120WL device. It explains how passwords stored in clear text can be
easily read by attackers if they gain access to the device.

CSRF to RCE Vulnerability: The analysis explores a scenario in the TACFAM
DB-120WL device where a Cross-Site Request Forgery (CSRF) vulnerability
leads to Remote Code Execution (RCE). It explains how an attacker can
inject malicious commands and achieve remote code execution.

Buffer Overflow Vulnerability: The analysis discusses an OS Command
Injection vulnerability in the TACFAM DB-120WL device, which occurs when
untrusted user input is directly included in system commands without
proper validation. It explains how the vulnerability can be exploited by
leveraging the ';' character.

The technical analysis provided covers the following topics:

02

Baud Rate: Baud rate determines the speed at which data is transmitted. It represents the
number of bits per second (bps) and must be set identically on both the transmitter and
receiver to ensure data synchronization.

Data Bits: Data bits define the number of bits used to represent each character. Common
configurations include 7 bits, 8 bits, or even 9 bits for special cases.

Parity: Parity allows for error detection during data transmission. It can be set to none,
even, or odd parity, providing basic error checking capabilities.

Stop Bits: Stop bits indicate the end of a data transmission. Common configurations
include one or two stop bits.

TX (Transmit): The TX pin is responsible for transmitting data from the UART transmitter to
the receiver.

RX (Receive): The RX pin receives data from the UART receiver.

UART (Universal Asynchronous Receiver/Transmitter) is a widely used communication
protocol that facilitates serial communication between electronic devices. It serves as a
crucial interface for connecting devices such as microcontrollers, sensors, and other
peripherals. This article provides an in-depth understanding of UART communication and
guides you through the process of connecting UART to USB using TTL (Transistor-Transistor
Logic) converters.

1. UART Communication Overview: UART communication is based on asynchronous serial
communication, where data is transmitted in a sequential bit-by-bit manner. It involves two
main components: a transmitter and a receiver. The transmitter converts data from parallel to
serial format, while the receiver performs the reverse operation.

2. UART Communication Parameters: UART communication requires a set of parameters to
establish a successful connection between devices. These parameters include:

3. UART Pin Configuration: UART communication requires specific pin connections between
devices. The common UART pin configuration consists of:

TACFAM DB-120WL PWN

WWW.HADESS.IO Page 6.22

Technical Analysis

c. Ground (GND): The GND pin establishes a common reference point for both devices,
ensuring a stable electrical connection.

4. Connecting UART to USB using TTL: To connect UART to a USB port on a computer, a TTL
converter is required. The TTL converter serves as an intermediary, facilitating the translation
between the UART voltage levels and the USB interface. The following steps outline the
process:

a. Identify the UART Pins: Determine the TX, RX, and GND pins on the UART device.

b. Choose a TTL Converter: Select a TTL converter module that matches the voltage levels of
the UART device. Common options include 3.3V and 5V TTL converters.

c. Connect the TTL Converter: Connect the TTL converter to the UART device using jumper
wires or appropriate connectors. Ensure the TX pin from the UART device is connected to the
RX pin of the TTL converter, and the RX pin from the UART device is connected to the TX pin of
the TTL converter. Also, connect the GND pins of both devices together.

d. Connect the TTL Converter to USB: Connect the USB end of the TTL converter to an
available USB port on the computer.

e. Install USB-to-UART Driver: If required, install the appropriate USB-to-UART driver for the
TTL converter on your computer. The driver ensures the operating system recognizes the
UART device connected via USB.

f. Configure Terminal Software: Use terminal software such as PuTTY, TeraTerm, or minicom to
configure the serial port settings, including the baud rate, data bits, parity, and stop bits.

g. Test the Connection: Open the terminal software and establish a connection to the UART
device using the configured settings. You should now be able to send and receive data
between the UART device and the computer via the USB port.

The code execution vulnerability in the TACFAM DB-120WL device is rooted in the processing
of user-supplied input within the firmware. By skillfully crafting malicious requests, an
attacker can exploit this flaw to inject arbitrary code into the device's memory, thereby
achieving remote code execution. This critical vulnerability grants unauthorized access to the
device, potentially compromising the entire network infrastructure.

TACFAM DB-120WL PWN

WWW.HADESS.IO Page 7.22

TACFAM DB-120WL PWN

WWW.HADESS.IO Page 8.22

To exploit the vulnerability, an attacker initiates a specially crafted request to the TACFAM
DB-120WL device, capitalizing on the device's insecure input processing. Exploiting this
weakness allows the attacker to manipulate the device's memory and inject arbitrary code,
thereby gaining control over its functionalities. This code execution capability enables
unauthorized access, data breaches, and complete control of the device.

Introduction: Connecting a TTL (Transistor-Transistor Logic) device to a USB port on a
computer allows for convenient serial communication and data exchange. By utilizing a
terminal screen, such as "screen" command-line tool, you can establish a connection with the
TTL device and interact with it via a terminal interface. This article provides a step-by-step
guide on connecting TTL to USB and using the screen in the terminal for effective
communication.

Run "screen" Command: In the terminal, type the following command to initiate a screen
session with the TTL device:

screen /dev/ttyUSBX <baud_rate>

Exploitation Process

For access to os shell via admin

TACFAM DB-120WL PWN

WWW.HADESS.IO Page 9.22

admin:admin

Through careful examination of the CGI scripts in the TACFAM DB-120WL device firmware, we
have identified potential areas where XSS vulnerabilities may exist. These vulnerabilities
typically stem from improper handling of user input, inadequate input validation, or lack of
output encoding. The vulnerable C code snippet below demonstrates a common scenario:

#include <stdio.h>
#include <stdlib.h>

void printHTML(char *data) {
 printf("Content-Type: text/html\n\n");
 printf("<html>\n");
 printf("<body>\n");
 printf("%s\n", data); // Vulnerable line: Unsanitized user input directly embedded into HTML
response
 printf("</body>\n");
 printf("</html>\n");
}

int main() {
 char *userInput = getenv("QUERY_STRING");
 printHTML(userInput);
 return 0;
}

TACFAM DB-120WL PWN

WWW.HADESS.IO Page 10.22

In this code snippet, the `printHTML()` function takes user input (`data`) and directly embeds it
into the HTML response without proper sanitization or encoding. This allows an attacker to
inject malicious JavaScript code into the web page.

Misconfigurations occur when system administrators or users inadvertently leave their
systems in an insecure state by incorrectly configuring permissions, access controls, or file
permissions. Such misconfigurations can provide attackers with unauthorized access to
critical files, including password files, compromising the security of the device.

TACFAM DB-120WL PWN

WWW.HADESS.IO Page 11.22

Authentication plays a crucial role in securing devices and systems. However, vulnerabilities in
the authentication mechanisms can lead to unauthorized access and compromise the security
of the device. This article explores a specific authentication bypass vulnerability in the
TACFAM DB-120WL device, which involves the base64 decoding of an HTTP header. Through
an in-depth analysis of vulnerable C code snippets, we will examine the root causes of this
vulnerability and discuss effective mitigation strategies to enhance the device's security.

By examining relevant C code snippets in the TACFAM DB-120WL device's authentication
mechanism, we can uncover the root causes of the vulnerability. The following code snippet
illustrates a potential scenario where the vulnerability exists:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/bio.h>
#include <openssl/evp.h>

void handleAuthentication(const char *header) {
 char decoded[1024];

 // Base64 decode the header
 BIO *bio = BIO_new(BIO_f_base64());
 BIO *bioMem = BIO_new_mem_buf(header, strlen(header));
 bioMem = BIO_push(bio, bioMem);
 BIO_read(bioMem, decoded, strlen(header));
 BIO_free_all(bioMem);

 // Perform authentication
 if (strcmp(decoded, "admin:password") == 0) {
 printf("Authentication successful!\n");
 // Grant access to restricted functionalities
 } else {
 printf("Authentication failed!\n");
 // Deny access
 }
}

int main() {
 const char *header = "Basic YWRtaW46cGFzc3dvcmQ="; // Base64-encoded
"admin:password"
 handleAuthentication(header);
 return 0;
}

TACFAM DB-120WL PWN

WWW.HADESS.IO Page 12.22

In this code snippet, the `handleAuthentication()` function performs the authentication

process by base64 decoding the provided header and comparing it to a hardcoded username

and password combination. However, the vulnerability lies in the improper handling of the

decoded data, allowing for authentication bypass.

TACFAM DB-120WL PWN

WWW.HADESS.IO Page 13.22

Stateless: Tokens are self-contained, meaning the server does not need to maintain a

session state for each user. This allows for easier scalability and reduces server-side

storage requirements.

Cross-domain and cross-platform support: Tokens can be used across multiple domains or

platforms since they are typically sent via HTTP headers or as part of the API request

payload.

Enhanced security: Tokens can be designed to expire after a certain period, forcing users

to reauthenticate regularly. They can also be revoked if compromised, reducing the

potential impact of a security breach.

Token theft: If an attacker manages to obtain a user's token, they can impersonate that

user and gain unauthorized access. This can occur through various means, such as cross-

site scripting (XSS) attacks, man-in-the-middle (MITM) attacks, or server-side

vulnerabilities.

Token leakage: Tokens should be carefully handled to prevent leakage. Storing tokens in

client-side storage mechanisms like local storage or cookies can make them vulnerable to

cross-site scripting attacks or cross-site request forgery (CSRF) attacks.

In token-based authentication, when a user successfully logs in to an application, they are

issued a unique token, which is typically a long string of characters. This token serves as proof

of the user's identity and is sent along with each subsequent request to the server. The server

then verifies the authenticity and validity of the token to grant or deny access to the

requested resources.

Token-based authentication offers several advantages over traditional username/password

authentication:

1.

2.

3.

While token-based authentication provides enhanced security, there are still some risks and

vulnerabilities to consider:

1.

2.

TACFAM DB-120WL PWN

WWW.HADESS.IO Page 14.22

3. Insecure token storage: If tokens are not securely stored on the server side, they may be
susceptible to data breaches. It is essential to properly encrypt and protect tokens to prevent
unauthorized access.

4. Token replay attacks: If tokens are not properly protected against replay attacks, an
attacker may intercept a token and use it multiple times to gain unauthorized access to
resources.

5. nadequate token expiration and revocation: Tokens should have an appropriate expiration
time and mechanism for revocation. If tokens have a lengthy expiration period or if there is no
proper revocation mechanism in place, the risk of unauthorized access increases.

To mitigate these risks, it is crucial to implement best practices, such as securely transmitting
tokens over HTTPS, using secure token storage mechanisms, employing measures like token
encryption and signing, implementing strong input validation to prevent injection attacks, and
regularly monitoring and auditing token usage to detect suspicious activities.

Cross-Site Request Forgery (CSRF) vulnerabilities can expose devices and systems to
significant security risks. When combined with Remote Code Execution (RCE) capabilities,
these vulnerabilities can result in severe consequences. This article explores a specific
scenario in the TACFAM DB-120WL device where a CSRF vulnerability leads to RCE. Through
an in-depth analysis of vulnerable C code snippets, we will examine the root causes of this
vulnerability and discuss effective mitigation strategies to enhance the device's security.

TACFAM DB-120WL PWN

WWW.HADESS.IO Page 15.22

By examining relevant C code snippets in the TACFAM DB-120WL device, we can uncover the
root causes of the vulnerability. The following code snippet illustrates a potential scenario
where the vulnerability exists:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

void processRequest(const char *request) {
 char command[1024];
 snprintf(command, sizeof(command), "echo \"%s\" | sh", request); // Vulnerable line:
Executing user-supplied command

 if (system(command) == -1) {
 printf("Failed to execute command.\n");
 }
}

int main() {
 const char *request = "rm -rf /"; // Malicious command
 processRequest(request);
 return 0;
}

In this code snippet, the `processRequest()` function takes user-supplied data (request) and
executes it as a command using the `system()` function. The lack of proper input validation
and access controls allows an attacker to inject malicious commands and potentially achieve
remote code execution.

TACFAM DB-120WL PWN

WWW.HADESS.IO Page 16.22

The OS Command Injection vulnerability in the TACFAM DB-120WL Device occurs when
untrusted user input is directly included in system commands without proper validation or
sanitization. In this case, the "action=ping" functionality allows attackers to inject arbitrary
commands by leveraging the ';' character.

TACFAM DB-120WL PWN

WWW.HADESS.IO Page 17.22

By examining relevant C code snippets in the TACFAM DB-120WL Device, we can uncover the
root causes of the vulnerability. The following code snippet exemplifies a potential scenario
where the vulnerability exists:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

void handlePingRequest(const char *address) {
 char command[1024];
 snprintf(command, sizeof(command), "ping -c 1 %s", address); // Vulnerable line: Command
injection via user input

 if (system(command) == -1) {
 printf("Failed to execute command.\n");
 }
}

int main() {
 const char *address = "127.0.0.1; ls"; // Malicious input with injected command
 handlePingRequest(address);
 return 0;
}

In this code snippet, the `handlePingRequest()` function constructs a system command to
execute a ping request using the provided address. However, the vulnerability lies in the lack
of proper input validation or sanitization, allowing an attacker to inject arbitrary commands
using the ';' character.

TACFAM DB-120WL PWN

WWW.HADESS.IO Page 18.22

Impact

The code execution vulnerability in the TACFAM DB-
120WL device exposes users and organizations to
significant risks. Attackers can gain unauthorized access
to the device, compromising its settings and potentially
infiltrating the entire network. This allows them control
over network configurations, device functionalities, and
sensitive information. The vulnerability can lead to data
breaches, with attackers retrieving login credentials,
network configurations, and personally identifiable
information. This compromised data can be exploited or
sold on the black market, causing severe consequences.
Attackers can also perform network reconnaissance and
exploit additional vulnerabilities within the network
infrastructure, compromising the security and integrity
of the entire network.

03

The code execution vulnerability in the TACFAM DB-120WL device poses significant risks to
users and organizations, including:

a. Unauthorized Access: Attackers can gain unauthorized access to the device, compromising
its settings, and potentially infiltrating the entire network. This unauthorized access grants
attackers control over network configurations, device functionalities, and sensitive
information.

b. Data Breaches: Once in control, attackers may retrieve sensitive information stored on the
device, such as login credentials, network configurations, or personally identifiable
information. This compromised data can be exploited for malicious purposes or sold on the
black market, leading to severe consequences for individuals and organizations.

c. Network Compromise: With control over the TACFAM DB-120WL device, attackers can
perform network reconnaissance, mapping the network topology, identifying connected
devices, and exploiting additional vulnerabilities within the network infrastructure. This
unrestricted access jeopardizes the security and integrity of the entire network.

Mitigation Strategies: To mitigate the code execution vulnerability in the TACFAM DB-120WL
device and safeguard against potential attacks, the following measures are recommended:

a. Firmware Updates: Users should ensure that their devices are running the latest firmware
version provided by the manufacturer. Regularly checking for firmware updates and promptly
applying them helps patch known vulnerabilities and bolster device security.

b. Network Segmentation: Implementing network segmentation limits the potential impact of
a compromised device. By dividing the network into separate segments, an attacker's lateral
movement and access to critical resources can be restricted, minimizing the overall network
risk.

c. Network Monitoring: Deploy robust network monitoring solutions to detect and identify
suspicious activities, such as unusual traffic patterns or unauthorized access attempts.
Intrusion detection systems and anomaly detection mechanisms provide early warning signs
of compromise, allowing for timely response and mitigation.

d. Vendor Security Best Practices: Engage with the device manufacturer and adhere to their
recommended security best practices. This includes using strong, unique passwords, disabling
unnecessary services, and implementing encryption protocols to strengthen the overall
security posture of the TACFAM DB-120WL device.

TACFAM DB-120WL PWN

WWW.HADESS.IO Page 20.22

Conclusion

The code execution vulnerability in the TACFAM DB-
120WL device poses significant security risks to users
and organizations relying on this networking solution.
This analysis has provided an in-depth examination of
the vulnerability, its potential impact, and suggested
strategies to mitigate the risk. By proactively applying
firmware updates, implementing network segmentation,
monitoring network activities, and following vendor
security best

04

HADESS
We are "Hadess"; A group of cyber security experts and white hat hackers who,
in addition to discovering and reporting vulnerabilities to big companies such
as Google, Apple and Twitter, have the honor of working with famous Iranian
companies over the past years. Ayman Burhan Rehiaft Azarakhsh Cyber
Security Company provides its customers with integrated solutions in the field
of cyber security, with a deep insight and understanding of the software
development process as well as the development infrastructure.

WWW.HADESS.IO

