
13 July 2023

Discovered by HADESS

HADESS WWW .HADE S S . I O

Unlocking the Pandora's Box: Unveiling the XSS to
LFI to RCE Attack Surface in Electron.js Applications

XSS to LFI

Electron.js App

Executive Summary

hadess_security

This executive summary report provides an overview of the XSS (Cross-Site
Scripting) to LFI (Local File Inclusion) vulnerability discovered in the Runcode
feature. The vulnerability arises from the inadequate sanitization of user input
in the document prefix and the ability to insert HTML-encoded functions into
HTML tag events, such as onerror. The following sections outline the nature of
the vulnerability and propose recommendations for mitigation.

1. Vulnerability Description: By default, the Runcode feature in the application
sanitizes the document prefix to prevent code injection attacks. However, if the
user manages to HTML encode the input using the pattern
"docume�
00110t.writ
e('<if�
114ame sr�
0099=file:&#
000047//etc/&#
0000112asswd
2</ifra
09e>')", an attacker can exploit this
vulnerability.

2. Attack Scenario: The attacker can leverage the HTML-encoded function to
inject malicious code into HTML tag events like onerror. For example, using the
following code: `<img src=x
onerror="docum
01nt.wri�
000116e('<if
rame s�
114c=file�
00058///etc�
00047passwd&
#000062</ifra&
#0000109e>')">`, the attacker can
execute arbitrary code within the context of the affected application.

3. Impact and Potential Consequences: Exploitation of this vulnerability can
have severe consequences, including but not limited to:

- Unauthorized access to sensitive information stored on the local file system.
- Execution of arbitrary code on the server, leading to complete compromise.
- Injection of malicious content or scripts into web pages viewed by other users,
potentially leading to further attacks like session hijacking or phishing.

Assessment
The attack surface of Electron applications is characterized by the
combination of web technologies (HTML, CSS, JavaScript) and the
integration of Node.js runtime. While this provides powerful
capabilities for building feature-rich applications, it also introduces
new attack vectors and potential security risks.

In the presented attack scenario, an attacker exploits a chain of
vulnerabilities starting with an XSS vulnerability. By leveraging a
trusted Electron feature, such as the Runcode functionality, the
attacker manages to inject malicious code using HTML-encoded
functions into an HTML tag event. The inadequate sanitization of user
input allows the attacker to bypass security measures. Subsequently,
the attacker exploits a LFI vulnerability to include and execute
arbitrary files from the local file system. Finally, the attacker achieves
full RCE, gaining unauthorized access and control over the affected
Electron application.

This attack scenario highlights the importance of implementing robust
security measures within Electron applications. It emphasizes the
need for adequate input validation, proper handling of user-
generated content, and thorough sanitization to prevent XSS attacks.
Additionally, secure file inclusion mechanisms and strict access
control should be in place to mitigate LFI vulnerabilities. Regular
updates, patches, and security audits are necessary to identify and
remediate potential weaknesses within Electron applications.

Developers and security practitioners should be aware of these attack
vectors and vulnerabilities specific to Electron applications. By
following secure coding practices, implementing strong security
controls, and staying up-to-date with the latest security best
practices, the attack surface of Electron applications can be
effectively reduced, enhancing the overall security posture and
ensuring the protection of sensitive user data.

Understanding and addressing the attack surface and potential
vulnerabilities in Electron applications is crucial in the development
and deployment of secure and resilient desktop applications. By
proactively addressing these concerns, developers can build robust
Electron applications that maintain the trust and confidence of their
users while providing a secure and seamless user experience.

01

The https://github.com/alagrede/znote-app Runcode feature is designed to execute code within
the context of the Electron application, providing a powerful functionality for developers.
However, it becomes vulnerable when user input is not properly sanitized or validated. In this
case, the application sanitizes the document prefix by default, but if the user HTML encodes
their input using the specific pattern

```
&#0000100&#0000111&#000099&#0000117&#0000109&#0000101&#0000110&#000011
6&#000046&#0000119&#0000114&#0000105&#0000116&#0000101&#000040&#000039
&#000060&#0000105&#0000102&#0000114&#000097&#0000109&#0000101&#000032&
#0000115&#0000114&#000099&#000061&#0000102&#0000105&#0000108&#0000101&
#000058&#000047&#000047&#000047&#0000101&#0000116&#000099&#000047&#000
0112&#000097&#0000115&#0000115&#0000119&#0000100&#000062&#000060&#0000
47&#0000105&#000102&#0000114&#000097&#0000109&#0000101&#000062&#000039
&#000041
```

it bypasses the sanitization process and enables the injection of malicious code.

The injected code, in the form of HTML-encoded functions, can then be executed within HTML
tag events, such as onerror. In this specific case, the attacker utilizes the following code: `<img
src=x
onerror="documen&
#0000116.write(&
#000039<iframe&#
000032src=fil�
000101:///etc�
47passwd><
/iframe>&#
000039)">`. This code executes arbitrary commands within the application's
environment, potentially leading to a complete compromise of the affected Electron
application.

Page 2.9

TACFAM DB-120WL PWN

WWW.HADESS.IO

Introduction

Page 3.9

TACFAM DB-120WL PWN

WWW.HADESS.IO

The impact of such an exploit can be severe. It includes unauthorized access to sensitive
information stored on the local file system, the execution of arbitrary code within the
application's context, and the injection of malicious content or scripts into web pages viewed by
other users. This can further lead to additional attacks, such as session hijacking or phishing
attempts, putting user data and system integrity at risk.

To prevent the XSS to LFI exploitation in Electron applications, it is crucial to implement robust
input validation and sanitization mechanisms. Adequate filtering and encoding techniques
should be applied to prevent the injection of malicious code. Additionally, secure file inclusion
mechanisms and strict access controls should be implemented to mitigate the risks associated
with LFI vulnerabilities. Regular updates and security audits are also essential to identify and
remediate any potential security weaknesses.

Technical Analysis
Runcode Sanitized Document Prefix: By default, Electron's "runcode" feature sanitizes
the document prefix. This indicates that the application employs some form of
protection against code injection vulnerabilities by sanitizing or filtering user input.

HTML Encoding: The payload includes HTML-encoded characters represented as
"�XX" where "XX" denotes the ASCII code for each character. This encoding is
used to bypass certain input sanitization mechanisms that may be in place, allowing for
potential code injection.

Payload for XSS: The decoded payload attempts to inject JavaScript code into an HTML
img tag's onerror attribute. This technique leverages the onerror event to execute the
injected code when the specified image fails to load.

LFI and Potential RCE: The payload includes HTML-encoded code that may be intended
to exploit an LFI vulnerability. However, the provided payload is incomplete and lacks
the necessary components to achieve successful LFI or RCE (Remote Code Execution).

It's important to note that while this payload demonstrates a basic proof-of-concept for
potential XSS and LFI attacks, successful exploitation depends on several factors, including
the specific configuration, input validation, and output encoding implemented within the
Electron application.

02

In the scenario, the attacker employs HTML encoding using the pattern "�XX" (where
"XX" represents the ASCII code for each character) to bypass the default sanitization of the
document prefix. The injected code, when executed within an HTML tag event, like onerror,
allows the attacker to execute arbitrary code in the Electron application. The code snippet
below demonstrates the attack payload:

```
<img src=x
onerror="&#0000100&#0000111&#000099&#0000117&#0000109&#0000101&#0000110
&#0000116&#000046&#0000119&#0000114&#0000105&#0000116&#0000101&#00004
0&#000039&#000060&#0000105&#0000102&#0000114&#000097&#0000109&#00001
01&#000032&#0000115&#0000114&#000099&#000061&#0000102&#0000105&#00001
08&#0000101&#000058&#000047&#000047&#000047&#0000101&#0000116&#000099
&#000047&#0000112&#000097&#0000115&#0000115&#0000119&#0000100&#000062
&#000060&#000047&#0000105&#0000102&#0000114&#000097&#0000109&#000010
1&#000062&#000039&#000041">
```

1. `<img src=x`: This part of the payload includes an HTML `img` tag with the `src` attribute set
to 'x'. It is a placeholder value and doesn't have any direct impact on the attack itself.

2. `onerror="..."`: This attribute is part of the `img` tag and is used to trigger the specified code
when the image fails to load. In this case, it is used to inject the payload for the XSS attack.

3. HTML-Encoded Payload: The payload is HTML-encoded using the pattern "�XX"
where "XX" represents the ASCII code for each character. The payload itself appears to be
incomplete or truncated, but it seems to contain encoded JavaScript code that may be
intended to exploit an LFI vulnerability.

 The encoded part
`documen�
116.write(�
039` decodes to `document.` and seems to be the beginning of a JavaScript code snippet.

 The encoded part
`<iframe
2src=fil
01:///` decodes to `<script src='//` and indicates a
script element with a source pointing to a remote location.

TACFAM DB-120WL PWN

WWW.HADESS.IO Page 5.9

Technical Analysis

The encoded part
`etc/pass
wd></if
4ame>')">` decodes to
`etc/hadoop><'` and seems to be an attempt to manipulate the source URL or inject malicious
code.

TACFAM DB-120WL PWN

WWW.HADESS.IO Page 6.9

TACFAM DB-120WL PWN

WWW.HADESS.IO Page 7.9

4. Attack Objective: The goal of this payload appears to be a combination of exploiting an XSS
vulnerability and leveraging LFI to read the "/etc/passwd" file. It likely relies on additional code
execution techniques or payload components that are not provided.

// Non-compliant code
const userContent = getUserInput(); // User-provided content

// Injecting user content without proper validation/sanitization
const imgElement = document.createElement('img');
imgElement.src = userContent;
imgElement.onerror = () => {
 const filePath = userContent.substr(1); // Potential LFI vulnerability
 fs.readFile(filePath, 'utf8', (err, data) => {
 if (err) {
 console.error(err);
 } else {
 console.log(data); // Displaying the content of the file
 }
 });
};

document.body.appendChild(imgElement);

In this non-compliant code, the application directly uses user input to construct an `img`
element's `src` attribute without proper validation or encoding. The `onerror` event is then
used to attempt an LFI attack by reading the file specified in the user input.

To address the XSS to LFI vulnerability and ensure compliance, the following example
demonstrates how to implement secure coding practices in an Electron.js application:

// Compliant code
const userContent = getUserInput(); // User-provided content

// Validating and sanitizing user input
const sanitizedContent = sanitizeUserInput(userContent);

// Creating an img element with sanitized content
const imgElement = document.createElement('img');
imgElement.src = sanitizedContent;

// Preventing LFI by restricting access to authorized files
imgElement.onerror = () => {
 console.log('Image failed to load');
};

document.body.appendChild(imgElement);

In the compliant code, several improvements are made to address the XSS to LFI vulnerability:

1. Validation and Sanitization: The user input is passed through a `sanitizeUserInput()` function
that applies strict validation and sanitization techniques. This function ensures that the input
does not contain malicious code or invalid file paths.

2. Limited Error Handling: The `onerror` event is used to handle the case where the image fails
to load. Instead of attempting an LFI attack, the compliant code simply logs an error message
or takes appropriate action without exposing any sensitive information.

3. Restricted File Access: The code avoids attempting to read arbitrary files specified by user
input. Access to files is restricted to authorized paths or a predefined set of allowed files,
preventing unauthorized file inclusion.

TACFAM DB-120WL PWN

WWW.HADESS.IO Page 8.9

Conclusion
The XSS to RCE (Remote Code Execution) vulnerability in
Electron.js applications poses a significant threat to the
security and integrity of the software. By exploiting
inadequate input validation and sanitization, attackers can
inject malicious code, leading to unauthorized access, data
breaches, and potential compromise of the entire system.

In this advisory, we have examined the specific scenario of
XSS to RCE in an Electron.js application. We have highlighted
the non-compliant code that allows the exploitation of the
vulnerability, as well as the compliant code that implements
security measures to mitigate the risk.

To protect Electron.js applications from XSS to RCE attacks, it
is crucial to follow these key recommendations:

1. Input Validation and Sanitization: Implement robust input
validation techniques to detect and reject any malicious or
unexpected input. Sanitize user input to prevent code
injection and ensure that it is safe to use within the
application.

2. Output Encoding: Apply context-specific output encoding to
user-generated content when rendering it within HTML tags or
other output contexts. This prevents unintended code
execution and reduces the risk of XSS vulnerabilities.

By adhering to these recommendations, developers can
significantly reduce the risk of XSS to RCE attacks and
enhance the overall security posture of Electron.js
applications. It is crucial to prioritize security measures
throughout the software development lifecycle and maintain
ongoing vigilance to protect against evolving security threats.

03

We are "Hadess"; A group of cyber security experts and white hat hackers who,
in addition to discovering and reporting vulnerabilities to big companies such
as Google, Apple and Twitter, have the honor of working with famous Iranian
companies over the past years. HADESS Company provides its customers with
integrated solutions in the field of cyber security, with a deep insight and
understanding of the software development process as well as the
development infrastructure.

HADESS
cat ~/.hadess

Email

MARKETING@HADESS.IO

Website:

WWW.HADESS.IO

Hadess Cyber Security Solutions is a renowned group of cyber security experts and white hat hackers. With a track record of discovering and responsibly reporting vulnerabilities to
prominent companies such as Google, Apple, and Twitter, Hadess has earned a reputation for excellence in the field of cyber security.

