
7 Sep 2023

A modern iOS application that exposes your
account token and runs arbitrary commands.

Rocket.Chat

HADESS WWW .HADE S S . I O

Discovered by HADESS

Executive Summary

hadess_security

The identified security concern relates to an exposed API key within the GET
URL of the /api/v1/users.info endpoint, specifically when requesting user
information by providing a userId parameter. This vulnerability could
potentially lead to unauthorized access to user data or unauthorized API
usage.
Immediate remediation steps include:

API Key Protection: Implement secure API key handling practices to
ensure they are not exposed in URLs.
Authorization Controls: Review and enhance user authorization
mechanisms to prevent unauthorized access.
Access Logging: Implement access logging and monitoring to detect and
respond to suspicious activities.

Failure to address this issue may result in data breaches, unauthorized
access, or misuse of the API.

The security concern pertains to the presence of Right-to-Left Override
(RTLO) character injection within chat messages. This technique can be
exploited to deceive users, potentially leading to phishing attacks or the
dissemination of malicious content.
Recommended actions to mitigate this threat include:

Input Validation: Implement input validation and filtering to block or
neutralize RTLO characters.
User Education: Educate users about recognizing and avoiding
suspicious content in chat messages.
Content Filtering: Deploy content filtering mechanisms to detect and
prevent the injection of malicious characters.

Neglecting to address RTLO character injection can undermine trust among
users and expose them to security risks.

Exposed API Key in GET URL (/api/v1/users.info?userId):
1.

2.

3.

RTLO Character Injection in Chat:
1.

2.

3.

Advisory

01

Real-Time Messaging: Rocket.Chat offers real-time messaging capabilities, allowing users to
engage in instant one-on-one or group chats. This feature fosters quick and efficient
communication among team members.
Channels and Private Groups: Users can create public channels for open discussions and
private groups for more confidential conversations. This flexibility enables users to organize
their conversations based on topics or project teams.
Multi-Platform Support: Rocket.Chat is available as a web application, desktop application,
and mobile app for various platforms, including Windows, macOS, Linux, Android, and iOS.
This ensures accessibility from virtually anywhere.
File Sharing: Users can share files, images, documents, and other media within Rocket.Chat,
making it easy to collaborate and exchange information seamlessly.
Integration Hub: One of the standout features of Rocket.Chat is its extensive integration
capabilities. It supports numerous third-party integrations, including popular productivity
tools, project management software, and customer relationship management (CRM)
systems. This allows organizations to consolidate their workflows and centralize
communication.
Customization: Rocket.Chat is highly customizable, allowing organizations to tailor the
platform to their specific needs. It offers the ability to create custom themes, plugins, and
integrations.
Security: Security is a top priority for Rocket.Chat. It provides end-to-end encryption for
one-on-one chats and offers various security features to protect sensitive information.
Open Source: Being open source means that Rocket.Chat's source code is freely available,
and organizations can modify it to suit their unique requirements. This also encourages a
vibrant community of developers and contributors.

Rocket.Chat is an open-source team collaboration platform and messaging system designed to
facilitate communication and collaboration within organizations. It provides a flexible and
customizable environment for teams to communicate through text, audio, and video, making it
suitable for a wide range of use cases, from small businesses to large enterprises. Here are some
key features and aspects of Rocket.Chat:

1.

2.

3.

4.

5.

6.

7.

8.

Page 2.10

Rocket.Chat IOS Application

WWW.HADESS.IO

Abstract

Rocket.Chat

9. Enterprise Features: For larger organizations, Rocket.Chat offers enterprise-grade features
such as user management, scalability, and advanced security options.
10. Community and Support: Rocket.Chat has an active and supportive community, providing
resources, documentation, and forums for users and administrators. There are also options
for professional support and managed hosting services.

Page 3.10WWW.HADESS.IO

Rocket.Chat IOS Application

Technical Analysis

02

Authentication Key in GET Request:
The security issue begins with the unfortunate inclusion of sensitive authentication keys
within the URL query string of a GET request. Normally, authentication information, such
as API keys or tokens, should never be exposed in this manner. Query parameters in GET
requests can be logged in various locations, including web server logs, browser history,
and possibly third-party analytics services.
Exploitation in /api/v1/users.info?userId:
Rocket.Chat's /api/v1/users.info endpoint allows users to retrieve user information by
providing a userId parameter. In our scenario, an attacker discovers that the
authentication key is exposed in the GET request, likely due to inadvertent exposure, poor
security practices, or vulnerabilities in the application.
Unauthorized Authorization:
Equipped with the exposed authentication key, the attacker can craft their own GET
requests to the /api/v1/users.info endpoint, replacing the legitimate userId parameter with
the target victim's userId. Since the authentication key is included, the system may
erroneously authorize these requests, believing they originate from a legitimate source.
Account Takeover and Unauthorized Access:
With unauthorized access to a victim's account information through the /api/v1/users.info
endpoint, the attacker can potentially gain access to sensitive user data, including
personal details, messages, and other confidential information. They may also manipulate
the victim's account settings or engage in malicious activities on their behalf, posing
severe risks to user privacy and security.

Account takeover scenarios pose significant threats to the security and privacy of users of any
application, particularly those that handle sensitive communication and data, such as the
Rocket.Chat iOS application. In this comprehensive analysis, we'll delve into a hypothetical
account takeover scenario within the Rocket.Chat iOS app. This scenario involves the
inadvertent exposure of an authentication key in a GET request and the subsequent
unauthorized access through the /api/v1/users.info?userId endpoint. To illustrate the
scenario, we'll provide examples of both non-compliant and compliant iOS source code.

Account Takeover Scenario Overview:
1.
2.

3.
4.

5.
6.

7.
8.

WWW.HADESS.IO Page 5.10

Technical Analysis

Rocket.Chat IOS Application

Non-Compliant iOS Source Code Example:
Below is an example of non-compliant iOS source code that demonstrates the vulnerability
described in the scenario:

let authKey = "YOUR_AUTHENTICATION_KEY"
let userId = "VICTIM_USER_ID"

// Vulnerable GET request with authentication key in the URL
let urlString = "https://your-rocket-chat-api.com/api/v1/users.info?
userId=\(userId)&authKey=\(authKey)"

if let url = URL(string: urlString) {
 let task = URLSession.shared.dataTask(with: url) { data, response,
error in
 // Handle the response here
 }
 task.resume()
}

Compliant iOS Source Code Example:
To address this security vulnerability, the following iOS source code example demonstrates
best practices by using headers for authentication and secure handling of sensitive data:

let authKey = "YOUR_AUTHENTICATION_KEY"
let userId = "VICTIM_USER_ID"

let apiUrl = "https://your-rocket-chat-api.com/api/v1/users.info"
if let url = URL(string: apiUrl) {
 var request = URLRequest(url: url)
 request.httpMethod = "GET"

 // Set headers for authentication
 request.setValue("Bearer \(authKey)", forHTTPHeaderField:
"Authorization")

 let task = URLSession.shared.dataTask(with: request) { data, response,
error in
 // Handle the response here
 }
 task.resume()
}

WWW.HADESS.IO Page 6.10

Rocket.Chat IOS Application

API Key Protection: Avoid including sensitive information like authentication keys in GET
requests. Instead, use appropriate methods like HTTP headers for authentication.
Authorization Controls: Implement robust authorization checks on each API request to
ensure that only authorized users can access specific endpoints and resources.
Security Audits: Regularly audit and review the application's security practices, including
API security, to identify and rectify vulnerabilities before they can be exploited.
User Education: Educate users about security best practices, such as choosing strong
passwords and enabling two-factor authentication to add an additional layer of account
protection.
Monitoring and Alerts: Set up monitoring and alerting systems to detect suspicious
activities and unauthorized access attempts, allowing for rapid response and mitigation.

Phishing Attacks: Attackers can use RTLO characters to disguise malicious URLs, tricking
users into clicking on harmful links.
Social Engineering: By manipulating text directionality, attackers can alter the appearance
of names or messages, leading users to trust malicious actors.
Malware Distribution: Concealing malicious file extensions in filenames can deceive users
into downloading and executing harmful files.
Bypassing Security Scanners: RTLO characters can evade security scanners and filters,
allowing malicious content to bypass detection.

Input Validation: Implement input validation to filter and neutralize RTLO characters in
user-generated content.
Content Filtering: Deploy content filtering mechanisms to detect and prevent the injection
of malicious characters.

Mitigation and Prevention:
To prevent such an account takeover scenario in the Rocket.Chat iOS application, or any
similar application, the following measures should be taken:

1.

2.

3.

4.

5.

Right-to-Left Override (RTLO) character injection is a cunning text manipulation technique
that poses a substantial security threat in various applications, including iOS applications like
Rocket.Chat. In this in-depth article, we will delve into the intricacies of RTLO character
injection. We'll explore its potential risks, provide five example payloads to illustrate its
danger, and discuss both non-compliant and compliant iOS source code. Furthermore, we will
examine two methods by which malicious actors could potentially exploit RTLO character
injection to run arbitrary code.

Understanding RTLO Character Injection:
RTLO character injection is an ingenious method wherein specially crafted Unicode characters
are utilized to manipulate the text's directionality. The most notorious character used for this
purpose is the "U+202E: Right-To-Left Override" character. When this character is inserted
into text, it can reverse the display order of characters following it, leading to deceptive and
malicious content.
Potential Risks:
RTLO character injection carries significant risks:

1.

2.

3.

4.

Mitigation Strategies:
To protect iOS applications like Rocket.Chat from RTLO character injection, consider the
following strategies:

1.

2.

WWW.HADESS.IO Page 7.10

Rocket.Chat IOS Application

User Education: Educate users about recognizing and avoiding suspicious content that
may contain RTLO characters.
Character Whitelisting: Allow only known-safe characters in user-generated content and
reject anything that deviates from the whitelist.
Security Audits: Regularly audit and review the application's security practices, including
API security, to identify and fix vulnerabilities related to RTLO character injection.

Phishing URL: www.evil.com/𝘲𝘸𝘦𝘳𝘵𝘺𝘶𝘪𝘰𝘱.𝘤𝘰𝘮
Social Engineering: 𝘶𝘴𝘦𝘳𝘯𝘢𝘮𝘦𝘴𝘰𝘧𝘪𝘯𝘴𝘪𝘥𝘦𝘳
Misleading File Name: important_document.pdf
Security Confusion: 𝘧𝘳𝘰𝘮𝘭𝘦𝘨𝘪𝘵𝘪𝘮𝘢𝘵𝘪𝘰𝘯.exe
Invisible Payload: malicious-script.𝗍𝗑𝘁

Example Payloads:
Here are five example payloads that demonstrate how RTLO characters can be used
maliciously:

Non-Compliant iOS Source Code:
Below is an example of non-compliant iOS source code that does not address RTLO character
injection:

let message = "Click here to visit our website: www.evil.com/𝘲𝘸𝘦𝘳𝘵𝘺𝘶𝘪𝘰𝘱.𝘤𝘰𝘮"
label.text = message

Compliant iOS Source Code:
To mitigate the risks associated with RTLO character injection, use input validation and
character whitelisting in your iOS source code, like this:

let message = "Click here to visit our website: www.evil.com/𝘲𝘸𝘦𝘳𝘵𝘺𝘶𝘪𝘰𝘱.𝘤𝘰𝘮"
let sanitizedMessage = sanitizeRTLOCharacters(message)
label.text = sanitizedMessage

func sanitizeRTLOCharacters(_ input: String) -> String {
 // Implement a function to remove or neutralize RTLO characters
 // Example: Remove U+202E character
 let sanitizedInput = input.replacingOccurrences(of: "\u{202E}", with:
"")
 return sanitizedInput
}

WWW.HADESS.IO Page 8.10

Rocket.Chat IOS Application

URL Redirection to a Malicious JavaScript File:
By injecting RTLO characters into a URL, an attacker could craft a deceptive link that
appears benign but redirects the user to a malicious JavaScript file. Once executed, this
JavaScript can perform arbitrary actions on the user's device, such as data theft or
unauthorized access.
Example Payload:
https://www.example.com/malicious.js%e2%80%ae%e2%80%ae%e2%80%ae%e2%80%ae
%e2%80%ae%e2%80%ae%e2%80%ae
Social Engineering for Code Execution:
By altering the appearance of a message or notification through RTLO character injection,
an attacker may deceive the user into executing a malicious action. For instance, the
attacker could manipulate a message to look like a system update prompt, tricking the user
into executing arbitrary code.

Exploiting RTLO Character Injection to Run Arbitrary Code:
Malicious actors may attempt to leverage RTLO character injection to run arbitrary code
within an application. Here are two potential methods:

1.
2.

3.
4.

5.
6.

WWW.HADESS.IO Page 9.10

Rocket.Chat IOS Application

Conclusion

Implement secure practices for handling authentication tokens,
such as using HTTP headers or secure cookies instead of including
them in URLs.
Apply proper access controls and authorization checks to ensure
that sensitive operations are only performed by authorized users.
Regularly audit and review the application's security measures,
including token handling and sharing functionality, to identify and
address vulnerabilities.

Implement input validation and content filtering to neutralize or
remove RTLO characters from user-generated content.
Educate users about recognizing suspicious content and links that
may contain RTLO characters.
Stay updated on security best practices and conduct regular
security audits to identify and mitigate vulnerabilities.

In this discussion, we've explored two critical security vulnerabilities:
exposing authentication tokens in GET requests with shared
functionality and running arbitrary code using Right-to-Left Override
(RTLO) character injection. Both of these vulnerabilities can have
significant consequences for the security and privacy of applications
and their users.

Exposing Auth Token in GET Requests with Share Functionality:
Exposing authentication tokens in GET requests, especially when
shared through functionality like sharing links or URLs, is a substantial
security risk. It can lead to unauthorized access, data breaches, and
misuse of sensitive information. To mitigate this risk:

Running Arbitrary Code with RTLO Character Injection:
RTLO character injection is a sophisticated technique that
manipulates text directionality to deceive users and potentially
execute malicious actions. It poses risks such as phishing attacks,
social engineering, and code execution. To defend against RTLO
character injection:

03

"Hadess" is a cybersecurity company focused on safeguarding digital assets
and creating a secure digital ecosystem. Our mission involves punishing hackers
and fortifying clients' defenses through innovation and expert cybersecurity
services.

HADESS
cat ~/.hadess

Email

MARKETING@HADESS.IO

Website:

WWW.HADESS.IO

Hadess Cyber Security Solutions is a renowned group of cyber security experts and white hat hackers. With a track record of discovering and responsibly reporting vulnerabilities to
prominent companies such as Google, Apple, and Twitter, Hadess has earned a reputation for excellence in the field of cyber security.

