
WWW .HADE S S . I OHADESS

Browser Attack
surface

Browser Attack
surface

Introduction
The web browser, often viewed as a mere portal to the vast digital world, has transformed into
one of the most critical software interfaces in our daily lives. As a bridge between users and the
boundless troves of web content, it's equipped with the power to both enrich and compromise
the digital experience. However, as web technologies have grown in complexity and utility, so
too have the security threats that aim to exploit them. This combination has placed browsers on
the frontline of cybersecurity battles, making understanding browser security risks more
essential than ever.

Browsers interface with diverse content, pulling data from multiple sources, rendering pages,
managing sessions, and running complex web applications. These processes, while integral to
the browser's functionality, present numerous points of potential exploitation. Malicious entities
have continually found creative ways to manipulate these features, whether through cross-site
scripting, drive-by downloads, or cookie theft, among other techniques.

Yet, the onus of security doesn't lie with browsers alone. Users often inadvertently expose
themselves to risks through poor browsing habits, failure to update software, or
mismanagement of plugins and extensions. For instance, outdated browser versions may lack
the latest security patches, making them susceptible to known vulnerabilities. Similarly, rogue
extensions can act as Trojans, appearing legitimate but harboring malicious intentions.

In the ensuing sections, we will delve deep into these risks, exploring the myriad ways browsers
can be compromised, the potential impacts of such breaches, and the measures that can be
taken to fortify browser security. As we move further into an interconnected era, the proverbial
"locks" on our digital "doors" – our browsers – demand our keen attention and understanding.

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

Document info

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are
safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected.
Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

At Hadess, our mission is twofold: to unleash the power of white hat hacking in punishing black
hat hackers and to fortify the digital defenses of our clients. We are committed to employing our
elite team of expert cybersecurity professionals to identify, neutralize, and bring to justice those
who seek to exploit vulnerabilities. Simultaneously, we provide comprehensive solutions and
services to protect our client's digital assets, ensuring their resilience against cyber attacks. With
an unwavering focus on integrity, innovation, and client satisfaction, we strive to be the guardian
of trust and security in the digital realm.

Security Researcher
Negin Nourbakhsh
Fazel Mohammad Ali Pour

HADESS

Table of Content

Browser Security Risks

Browser Capabilities

Paths and Profiles Across Platforms

Analyzing Important Tables and Columns

The Challenge of Patch Management

Conclusion

Executive Summary

Attacks

https://emojipedia.org/ninja
https://emojipedia.org/ninja
https://emojipedia.org/ninja

Web browsers are more than just software applications; they
are the portals through which most of us access the digital
universe. With the escalating digitization of our day-to-day
activities, from banking to entertainment to business
operations, browsers have never played a more critical role.
This centrality underscores the need for robust browser
security, as vulnerabilities can disrupt not just individual
users, but entire organizational infrastructures.

The Ubiquity of Browser Security Risks:
As the frontlines of our online interactions, browsers are
continually targeted by a myriad of security threats. These
range from sophisticated cross-site scripting attacks to
deceptive phishing scams, to more covert drive-by
downloads. Each of these threats presents its unique set of
challenges, with potential ramifications that can severely
compromise user data and privacy.

The Human Element:
While technological solutions are essential, it's paramount to
acknowledge the role of the user. Often, a browser's security
posture is influenced by human actions, such as the timely
updating of software, prudent management of browser
extensions, and discernment against malicious links. The
human-user interaction with the browser often becomes the
weakest link, even with advanced security protocols in place.

A Deep Dive into the Firefox Vulnerability:
Amid this backdrop of prevalent browser threats, the article
delves into a specific and intriguing vulnerability linked to
Firefox. This flaw, stemming from a misconfiguration with
'xdg-mime'—a MIME type management tool in Linux
environments—leads to an anomalous behavior where Firefox
can be trapped into opening tabs ad infinitum until it crashes.
It's a stark illustration of how even renowned browsers aren't
immune to subtle glitches.

Implications and Lessons:
While the Firefox misconfiguration might seem relatively
benign at first glance, its implications are profound. It
exemplifies how intricate software ecosystems can become
susceptible to unexpected behaviors due to minor
oversights. The vulnerability underlines the need for
rigorous, continual software testing, prompt patching, and
the active management of configurations across platforms.

Towards a Secure Browsing Future:
As we increasingly intertwine our lives with digital platforms,
the security of our browsers isn't just an IT concern—it's a
societal one. Recognizing and addressing vulnerabilities,
while also educating users on best practices, will be
instrumental in ensuring that our digital gateways remain
both functional and secure. This article aims to illuminate
these challenges and advocate for a comprehensive,
proactive approach to browser security.

Key Findings

Imperative for Comprehensive Testing: The identified vulnerability underscores the importance of thorough software
testing across different environments and configurations. Assumptions about software behavior in varied environments
can lead to oversights.

Pervasive Security Threats: Browsers, as the primary interface for online interactions, are constant targets for myriad
security threats. From advanced tactics like cross-site scripting to deceptive phishing, browsers face a diverse array of
challenges.

User Influence on Security: Often overlooked, the role of the end-user is a significant factor in a browser's overall security.
Practices like timely software updates, judicious use of extensions, and cautious browsing habits can substantially reduce
potential threats.

Firefox xdg-mime Misconfiguration: A notable vulnerability was identified in Firefox related to its interaction with 'xdg-
mime' in Linux systems. The misconfiguration can cause Firefox to enter an infinite loop of opening new tabs, eventually
leading to a crash.

Subtleties in Software Interactions: The Firefox misconfiguration emphasizes the fragility of software interactions. What
might appear as minor oversights in configuration or code can lead to unintended and disruptive behaviors.

Executive Summary

HADESS.IO Browser Attack Surface

Web browsers, as our primary gateways to the vast digital universe, have become intricate software tools
with multifaceted features and functionalities. They are continuously evolving, not just in terms of
features, but also in addressing the ever-growing list of vulnerabilities and threats. This paper dives deep
into the challenges surrounding patch management in browsers.

Patch management, the systematic process of deploying updates to software applications, is crucial for
browsers given their direct exposure to external threats. However, it's not as straightforward as it appears.
Factors like diverse user bases, multiple operating platforms, and backward compatibility can complicate
the rollout of crucial updates.

Furthermore, the urgency to address critical vulnerabilities often pushes developers into a rushed
patching cycle. This urgency can sometimes compromise the quality of patches, leading to new,
unforeseen issues or even reintroducing old vulnerabilities. Such scenarios emphasize the need for a more
refined, yet agile, patch management strategy.

Abstract

HADESS.IO

Browser Attack Surface

Browser Attack Surface

HADESS.IO

BY HADESS

Attacks

01

Browser Security Risks
Web browsers are more than just tools for accessing information; they are the gateways to our digital identities, the
portals through which we engage with the vast universe of the Internet. As our dependency on these platforms grows, so
too does the attention they receive from those with malicious intent. Recent years have seen a disturbing surge in
browser-based vulnerabilities, a phenomenon not merely incidental but emblematic of the evolving cybersecurity
landscape. This spike in potential threats isn't just a matter of numbers but speaks to a deeper, more insidious trend.
Cyber adversaries are no longer merely exploiting known vulnerabilities—they are crafting complex, adaptive strategies
designed to probe, test, and breach browser defenses. As we peel back the layers on this issue, we delve into an
environment marked by subterfuge, innovation, and a constant game of cat and mouse between defenders and attackers.
This article seeks to illuminate the intricate dance between browser security mechanisms and the sophisticated
techniques employed by cybercriminals, with a spotlight on the revealing world of adversary simulation operations.

The Ever-Present Threat Landscape
Browser vulnerabilities are not a novel threat; they've been a persistent concern since the dawn of the internet era.
However, the surge by over 20% in just the last year, as highlighted in the 2021 report, emphasizes an acceleration of risk.
This rapid increase raises immediate questions about the evolving nature of these vulnerabilities and the broader
implications for digital security.

The Pandemic’s Digital Pivot
The COVID-19 pandemic dramatically altered the global digital landscape. With lockdowns and remote work becoming the
new norm, there was a notable surge in online activity. Personal, professional, and educational interactions shifted to the
web, leading to a more extensive and more varied user base. This uptick in traffic, combined with users perhaps less
familiar with online best practices, created a vast playground for cybercriminals.

Cybercriminal Evolution
While the pandemic broadened the attack surface, it was the evolution in cybercriminal strategies that exploited it. Gone
are the days of rudimentary phishing attacks. Today’s hackers employ sophisticated methods, combining multiple
vulnerabilities, deploying zero-day exploits, and leveraging advanced persistent threats (APTs) to penetrate defenses.

Proliferation of Web Technologies
The web ecosystem has witnessed a diversification of technologies and platforms, such as WebAssembly, progressive web
apps, and single-page applications. While these innovations enhance user experience and functionality, they also
introduce novel vulnerabilities, broadening the attack spectrum.

Attack Sophistication and Economic Incentives
The dark web and cybercrime forums have become hotbeds for exchanging tools, strategies, and even zero-day exploits.
With ransomware attacks becoming increasingly profitable, there's a heightened economic incentive for hackers to
identify and exploit browser-based vulnerabilities.

The Challenge of Patch Management
One key factor contributing to the vulnerability surge is the challenge of timely patch management. Software developers
constantly race against time, striving to identify and rectify vulnerabilities. Yet, even when patches are available, a
significant proportion of users delay or even neglect updates, leaving themselves exposed.

The Intersection with Other Technologies
Modern browsers integrate with a plethora of other applications and technologies, from plugins to cloud services. Each
integration point potentially introduces new vulnerabilities, making browsers a nexus of multiple security concerns.

The Road Ahead
The current threat landscape, marked by an ever-increasing number of browser vulnerabilities, demands vigilance. As the
web continues to evolve and become more complex, a multifaceted, proactive approach to browser security will be
paramount in safeguarding users and organizations.

The Rise of Browser-Based Attacks in Adversary Simulations
In adversary simulations conducted over the last year, a significant 30% focused on exploiting browser-based
vulnerabilities. This underscores the importance and susceptibility of browsers in the current threat landscape.

Scripting Attacks: A Key Concern
Cross-site scripting (XSS) remains a dominant concern. This type of vulnerability allows attackers to inject malicious
scripts, with 40% of browser-related breaches in simulations attributed to XSS exploits.

HADESS.IO Browser Attack Surface

https://emojipedia.org/ninja

HADESS.IO

Phishing and Credential Harvesting
Phishing attacks are another major player. Cybersecurity firms noted a 25% increase in simulated phishing operations
targeting browser vulnerabilities, aiming to deceive users into providing sensitive information.

Third-party Plug-ins: A Double-edged Sword
One notable vulnerability stems from third-party plug-ins. While they enhance browser functionality, they also introduce
potential weak points. An estimated 15% of browser-related breaches in adversary simulations can be traced back to
third-party plug-in vulnerabilities.

The Impact of Browser Sandboxing
Modern browsers use sandboxing techniques to isolate web processes, preventing malicious code from accessing critical
system resources. However, sandbox escape techniques have been employed in 10% of adversary simulations, revealing
gaps in this security measure.

Browser Capabilities

User Interaction and Behavior
Whether it's the websites a user visits, the bookmarks they save, or the search queries they perform, browsers
have an extensive record of user interaction. Queries like SELECT url, title, visit_count FROM visits WHERE
visit_count > 100; can provide insights into the most frequently visited websites, while SELECT keyword, COUNT(*)
AS query_count FROM search_engines GROUP BY keyword ORDER BY query_count DESC LIMIT 10; would yield the
most common search terms. This data, in the wrong hands, can be used to profile users, making it a potential
privacy concern.

Sensitive Data Storage
Browsers often offer to save user inputs to enhance the user experience. This includes form submissions, credit
card details, passwords, and even auto-fill data. However, if this data is compromised, it could have disastrous
consequences for the user. For instance, SELECT formSubmitURL, encryptedUsername, encryptedPassword
FROM moz_logins WHERE formSubmitURL IS NOT NULL; provides access to login details, and a query like SELECT
name_on_card, card_number, expiration_month, expiration_year FROM credit_cards; can potentially expose saved
credit card details.

Engagement Metrics and Preferences
Browsers not only store raw user data but also compile engagement metrics. Queries like SELECT origin,
SUM(count) AS total_engagement_count, MAX(last_engagement_time_usec) AS last_engagement_time FROM
media_engagement GROUP BY origin; offer insights into user engagement with media content. These metrics can
be leveraged for targeted advertising or content recommendations, but they can also be a privacy intrusion if
accessed without consent.

Potential Threat Vectors
The data that browsers hold can be a goldmine for malicious actors. Whether they're targeting saved passwords,
looking for patterns in visited URLs, or trying to exploit downloaded files, the potential threat vectors are vast. For
instance, a query like SELECT url, target_path, start_time, end_time FROM downloads WHERE url LIKE
'%malware%'; might expose downloaded files from suspicious URLs, and SELECT guid, manufacturer, product
FROM usb_devices WHERE manufacturer LIKE '%unknown%' ORDER BY connection_timestamp DESC LIMIT 5;
could unveil potentially harmful USB device connections.

User Sessions and Interactions
Monitoring the length and frequency of user sessions can shed light on browsing habits.

Browser Attack Surface

SELECT session_id, start_time, end_time, total_duration FROM user_sessions ORDER BY
total_duration DESC LIMIT 10;

https://emojipedia.org/ninja

HADESS.IO Browser Attack Surface

Extensions and Plugins Data
Extensions can access a lot of user data. Understanding which extensions are frequently used and what permissions
they have is essential.

SELECT extension_id, name, permissions, last_access_time FROM extensions_data WHERE permissions
LIKE '%readData%';

Ad Interaction and Tracking
Advertisers heavily track user interactions with ads for targeted marketing.

SELECT ad_id, click_count, hover_duration FROM ads_interactions WHERE click_count > 10;

Some websites allow or require users to access local files, and this can be a potential vector for vulnerabilities.
Accessed Files and Local Data

SELECT file_path, last_access_time FROM local_files_access WHERE file_path LIKE '%.exe%';

Pop-ups can sometimes be a front for malicious activities.
Pop-up Interactions

SELECT pop_up_url, interaction_type, interaction_time FROM pop_ups_history WHERE interaction_type
= 'allowed';

Notifications require permissions, and tracking these can prevent potential misuse.
Browser Notifications and Permissions

SELECT origin_url, notification_type, permission_status FROM notifications_data WHERE
permission_status = 'granted';

Unauthorized access to hardware components can be a serious breach.
=Camera and Microphone Access Logs

SELECT origin_url, hardware_component, access_time FROM hardware_access_logs WHERE
hardware_component IN ('camera', 'microphone');

Windows: C:\Users\<YourUsername>\AppData\Local\Google\Chrome\User Data\Default\Login Data
macOS: ~/Library/Application Support/Google/Chrome/Default/Login Data
Linux: ~/.config/google-chrome/Default/Login Data

Windows: C:\Users\<YourUsername>\AppData\Roaming\Mozilla\Firefox\Profiles\<ProfileName>\logins.json
macOS: ~/Library/Application Support/Firefox/Profiles/<ProfileName>/logins.json
Linux: ~/.mozilla/firefox/<ProfileName>/logins.json

Windows: C:\Users\<YourUsername>\AppData\Local\BraveSoftware\Brave-Browser\User Data\Default\Login Data
macOS: ~/Library/Application Support/BraveSoftware/Brave-Browser/Default/Login Data
Linux: ~/.config/BraveSoftware/Brave-Browser/Default/Login Data

Windows: C:\Users\<YourUsername>\AppData\Roaming\Opera Software\Opera Stable\Login Data
macOS: ~/Library/Application Support/com.operasoftware.Opera/Login Data
Linux: ~/.config/opera/Login Data

Google Chrome:
Popular worldwide, Google Chrome's data management has become a reference point for many. The browser stores
various user-specific settings, bookmarks, extensions, and importantly, login credentials, in a "Profile" directory. These
credentials are stored in a file named "Login Data".
Location of Chrome's Profile data:

Mozilla Firefox:
Mozilla Firefox, an open-source favorite, similarly organizes its data. Firefox segregates its user data into various profiles,
each containing a unique set of user data. The "logins.json" file within each profile directory holds the login credentials.
Location of Firefox's Profile data:

Brave:
Brave Browser, recognized for its privacy-focused features, also keeps its user data in a profile directory. Like Chrome, it
uses a "Login Data" file to store credentials, given that it's built on the same Chromium platform.
Location of Brave's Profile data:

Opera:
Opera, while not as widely adopted as some others on this list, has been a long-standing player in the browser market. Its
profile data storage, like the others, includes a specific file, "Login Data," where credentials are stored.
Location of Opera's Profile data:

HADESS.IO Browser Attack Surface

Paths and Profiles Across Platforms

Google Chrome & Its Siblings:
Chrome: homeDir + "/AppData/Local/Google/Chrome/User Data/Default/"
Chrome Beta: homeDir + "/AppData/Local/Google/Chrome Beta/User Data/Default/"
Chromium (Open-source variant of Chrome): homeDir + "/AppData/Local/Chromium/User Data/Default/"

Microsoft Edge:
homeDir + "/AppData/Local/Microsoft/Edge/User Data/Default/"

Brave (Privacy-focused, built on the same engine as Chrome):
homeDir + "/AppData/Local/BraveSoftware/Brave-Browser/User Data/Default/"

Asian Market Dominants:
360 Speed Browser: homeDir + "/AppData/Local/360chrome/Chrome/User Data/Default/"
QQ Browser (Popular in China): homeDir + "/AppData/Local/Tencent/QQBrowser/User Data/Default/"
Sogou (A notable Chinese search engine's browser): homeDir +
"/AppData/Roaming/SogouExplorer/Webkit/Default/"

Opera & Its Gaming Variant:
Opera: homeDir + "/AppData/Roaming/Opera Software/Opera Stable/"
Opera GX (A version of Opera designed for gamers): homeDir + "/AppData/Roaming/Opera Software/Opera GX
Stable/"

Others:
Vivaldi (A highly customizable browser): homeDir + "/AppData/Local/Vivaldi/User Data/Default/"
Coc Coc (Tailored for the Vietnamese audience): homeDir + "/AppData/Local/CocCoc/Browser/User
Data/Default/"
Yandex (Russian multinational specializing in Internet-related products): homeDir +
"/AppData/Local/Yandex/YandexBrowser/User Data/Default/"
DC Browser: homeDir + "/AppData/Local/DCBrowser/User Data/Default/"

Mozilla Firefox:
Unlike other browsers which have a single profile directory, Firefox organizes its data into various profiles. The
profile root is located at homeDir + "/AppData/Roaming/Mozilla/Firefox/Profiles/"

Windows: A Haven of Browser Diversity
Windows, with its vast user base, naturally supports a multitude of browsers. Here's where each browser stashes its user
data:

1.

2.

3.

4.

5.

6.

7.

The Chrome Family:
Chrome: homeDir + "/.config/google-chrome/Default/"
Chrome Beta: homeDir + "/.config/google-chrome-beta/Default/"
Chromium: homeDir + "/.config/chromium/Default/"

Brave:
homeDir + "/.config/BraveSoftware/Brave-Browser/Default/"

Microsoft Edge:
homeDir + "/.config/microsoft-edge/Default/"

Opera:
homeDir + "/.config/opera/Default/"

Vivaldi:
homeDir + "/.config/vivaldi/Default/"

Mozilla Firefox:
homeDir + "/.mozilla/firefox/"

The Chrome Lineage:
Chrome: homeDir + "/Library/Application Support/Google/Chrome/Default/"
Chrome Beta: homeDir + "/Library/Application Support/Google/Chrome Beta/Default/"
Chromium: homeDir + "/Library/Application Support/Chromium/Default/"

Brave & Edge:
Brave: homeDir + "/Library/Application Support/BraveSoftware/Brave-Browser/Default/"
Edge: homeDir + "/Library/Application Support/Microsoft Edge/Default/"

Opera Variants:
Opera: homeDir + "/Library/Application Support/com.operasoftware.Opera/Default/"
Opera GX: homeDir + "/Library/Application Support/com.operasoftware.OperaGX/Default/"

Others:
Vivaldi: homeDir + "/Library/Application Support/Vivaldi/Default/"
Coc Coc: homeDir + "/Library/Application Support/Coccoc/Default/"
Yandex: homeDir + "/Library/Application Support/Yandex/YandexBrowser/Default/"
Arc Browser: homeDir + "/Library/Application Support/Arc/User Data/Default"

Mozilla Firefox:
homeDir + "/Library/Application Support/Firefox/Profiles/"

Linux: The Open-Source Paradise
Linux, known for its customizability and open-source nature, also supports a myriad of browsers.

1.

2.

3.

4.

5.

6.

Darwin (macOS): Apple's Unix-Based OS
macOS, with its unique blend of user-friendliness and Unix power, places user data within the "Library" directory.

1.

2.

3.

4.

5.

HADESS.IO Browser Attack Surface

Analyzing Important Tables and Columns

Logins: This table stores saved website login credentials. Columns such as action_url, username_value, and
password_value provide the website's URL, the saved username, and the saved password, respectively.
Autofill: As the name suggests, this table contains data related to the browser's autofill functionality. The name and
value columns capture the autofill data for forms and fields.
Cookies: It captures stored browser cookies. The host_key, name, and value columns contain details about the
cookies' origin website, their names, and values.
Bookmarks: This table contains information on user bookmarks. url and title columns provide the URL and title of the
bookmarked page.
History: Holds browsing history data. The url and title columns detail the websites visited and their respective titles.
Downloads: A repository of downloaded file records. The url and target_path columns shed light on the source URL of
the download and the location it was saved to.
Extensions: Lists the browser extensions installed. The name and permissions columns describe the extension's name
and the permissions it has.
Media Engagement: Stores data regarding media engagement. The origin and last_engagement_time_usec columns
highlight the website's origin and the last time media was engaged.

Google Chrome
Google Chrome, being the world's most popular browser, has a myriad of tables that store user data. Here are the most
pivotal ones:

...and many more. For brevity, not all tables are detailed, but Chrome has tables capturing data from USB devices, search
engines, form data, local storage, etc.

moz_logins: Contains saved website logins. Columns like formSubmitURL, hostname, encryptedUsername, and
encryptedPassword provide details about the website and encrypted login credentials.
moz_autofill: Houses autofill data. The name and value columns depict the autofill form data.
moz_cookies: Contains stored browser cookies. host, name, and value columns describe the cookie's host website,
name, and value.
moz_bookmarks: Holds bookmark data. url and title columns detail the bookmarked URL and title.
moz_historyvisits: Focuses on user browsing history. from_visit, place_id, and visit_date provide data on website visits,
the place ID, and the visit date.

Logins: Similar to Chrome, it contains saved login credentials. The action_url, username_value, and password_value
columns provide data on the website's URL and saved login details.
Autofill: Stores the browser's autofill data. Columns name and value depict the autofill data for forms.
Cookies: Like other browsers, it captures stored browser cookies. Columns host_key, name, and value offer insights
into the cookie's host, name, and value.

Firefox
Firefox, an open-source browser by Mozilla, similarly has numerous tables critical to forensic investigations:

...among others. Firefox tables also contain data on user extensions, search history, downloaded files, etc.

Microsoft Edge
Microsoft's Edge browser, though it has a foundation in Chrome's Chromium project, has its unique tables:

...and more. Edge, similar to Chrome, captures data on user bookmarks, browsing history, extensions, and other user
activities.

HADESS.IO Browser Attack Surface

Table 1 - Possible Attacks

The Challenge of Patch Management

This report provides a technical analysis of a vulnerability identified in Firefox version 102.8 on Linux where the browser
goes into an infinite loop of opening tabs, leading to a potential Denial-of-Service (DoS) scenario.

Vulnerability Overview
Name: Infinite Tab Loop Vulnerability
Affected Version: Firefox 102.8 on Linux
Impact: Browser crash, potential data loss
Vulnerability Type: Denial-of-Service (DoS)

Technical Details
The vulnerability manifests itself when the firefox-trunk launcher file, provided by Ubuntu, is set as the default opener
application. If a user is tricked into opening a file with a specific pattern, such as a .patch file (though other file types
might also be vulnerable), the browser goes into an infinite loop, continuously opening tabs.

Vulnerability Root Cause Analysis
The primary cause of this vulnerability seems to reside in how the Ubuntu-specific firefox-trunk launcher script interacts
with Firefox's file handling. When a file is attempted to be opened, the script may unintentionally invoke a new instance of
Firefox, rather than passing the file to an already opened instance.

The problem is exacerbated by potential misconfigurations in the xdg-mime system, a MIME type database for desktop
environments on Linux. If the MIME type for .patch files is set to open with Firefox by default, it triggers the infinite loop.

The xdg-mime utility is a part of the xdg-utils suite on Linux systems, which assists in managing MIME types and their
associated default applications. When a file type, like an RSS feed, is to be opened, xdg-mime determines the default
application set to handle it.

Under specific circumstances, when Firefox is set as the default handler for certain RSS or Atom files and such a file is
malformed or not correctly validated, an infinite loop scenario is triggered. When attempting to process the file, Firefox
refers to xdg-mime, which in turn redirects back to Firefox, leading to endless tab openings until Firefox becomes
unresponsive.

Firefox is set (either by user action or misconfiguration) as the default handler for .rss or .atom files.
A user tries to open a malformed or unvalidated .rss or .atom file.
Firefox defers to xdg-mime to determine the file's handler.
xdg-mime identifies Firefox as the handler.
Firefox attempts to open the file in a new tab.
Due to the file's malformed nature, Firefox again queries xdg-mime.
Steps 3-6 repeat indefinitely.

Here's a simplified, conceptual assembly snippet illustrating the loop:

HADESS.IO

start:
 CALL load_file ; Load the RSS or Atom file
 CALL check_file_validity ; Validate the file format
 CMP AL, invalid ; Check if file is invalid
 JZ query_xdg_mime ; If file is invalid, query xdg-mime

query_xdg_mime:
 CALL check_xdg_mime ; Ask xdg-mime for file handler
 CMP AL, firefox ; Check if Firefox is the handler
 JZ open_tab ; If yes, jump to open_tab

open_tab:
 OPEN new_tab ; Open the file in a new tab
 JMP start ; Loop back to start

Browser Attack Surface

https://emojipedia.org/ninja

Here are some commands illustrating the interaction:

Set Firefox as the default handler for .rss files:

xdg-mime default firefox.desktop application/rss+xml

Attempt to open a malformed RSS file:

xdg-open malformed.rss

Kill Chain
Reconnaissance: Attacker identifies the victim is using the vulnerable version of Firefox on Linux.
Weaponization: Prepare a .patch file, potentially named sample.atom either with malicious content or leave it empty.
Delivery: Send the .patch file to the victim via email, chat, or any other medium.
Exploitation: Instruct or trick the victim into opening the sample.atom file using Firefox.
Installation: Not applicable for this attack.
Command & Control: Not applicable for this attack.
Actions on Objectives: The browser crashes due to resource exhaustion.

Exploitation
The attacker needs to:

Prepare a file, like "sample.atom" or a .patch file.
Trick the victim into downloading the file.
Instruct the victim to open this file using their Firefox browser.
Command to check the current default handler for .patch files:

xdg-mime query default text/x-patch

And for reproduce the exploitability:

Create a sample .patch file
echo "This is a sample patch file." > sample.atom

Instruct the victim to open this file using Firefox
firefox sample.atom

HADESS.IO Browser Attack Surface

Image 1 - Infinite tab opening loops can happen on Linux

1. Continuous Discovery of Vulnerabilities
Vulnerabilities in browsers are discovered almost daily. These vulnerabilities can range from minor ones with little impact
to severe zero-day vulnerabilities that can be exploited as soon as they're discovered.

Example: The command below demonstrates how to query the National Vulnerability Database (NVD) for known
vulnerabilities related to Firefox:

HADESS.IO

Defense in Depth

curl https://nvd.nist.gov/feeds/json/cve/1.1/nvdcve-1.1-recent.json.gz | gunzip | jq
'.CVE_Items[] | select(.cve.Affects.sw[].sw_cpe.uri:contains("firefox"))'

2. Complexity of Browsers
Modern browsers are no longer just tools to view web pages; they are complex software that supports web apps,
extensions, and plugins. This complexity increases the chances of vulnerabilities.

Example: To check for outdated plugins in Firefox, you can navigate to about:plugins. Any outdated plugin can be a
potential security risk.

3. Dependency on Third-party Libraries
Browsers often rely on third-party libraries. If any of these libraries have vulnerabilities, it affects the browser too.

Command:
To check shared library dependencies of a program, such as Firefox:

ldd /path/to/firefox-bin

Browser Attack Surface

Remediation
To temporarily address this issue:

Open Firefox and navigate to about:preferences.
Under Applications, find the .patch file type or "differences between files".
Change the action from "Open in Firefox" to "Text Editor" or any other preferred application.

https://emojipedia.org/ninja

HADESS.IO

6. Automatic Updates vs. User Consent
While automatic updates ensure users get the latest patches immediately, they may also disrupt work or change browser
behavior. Getting the balance right between auto-updates and user consent is tricky.

Command:
To disable automatic updates in Firefox via about:config, you can set the app.update.auto preference to false.

7. Managing Legacy Systems
Older systems that don't support newer browser versions pose a significant challenge, as they might be left unpatched
and vulnerable.

8. The Threat of Malicious Patches
There's always a risk that threat actors could introduce malicious patches. Ensuring the integrity of patches is crucial.

Example:
To verify the integrity of a downloaded Firefox patch:

sha256sum firefox-patch.tar.gz | grep <expected_checksum>

Browser Attack Surface

4. Diverse User Base with Different Needs
Not all users can apply patches immediately due to custom configurations, extensions, or integration with enterprise
systems. Ensuring patches don't disrupt user configurations is challenging.

5. Deciding What to Patch
Sometimes, applying a patch to fix one problem might introduce another. Deciding what to patch and testing patches are
resource-intensive tasks.

Example:
Before applying a patch, you might want to test it in a staging environment first. Using Docker can help:

docker run -d --name firefox-test -v /path/to/patched/firefox:/firefox ubuntu:latest
/firefox/firefox

Conclusion
The vulnerability stemming from the interaction between Firefox and
xdg-mime regarding malformed RSS and Atom files underscores the
significance of rigorous MIME type management and inter-application
coordination in modern computing systems. An infinite loop, as
illustrated in this case, can not only disrupt the user experience but
can also lead to potential exploitation avenues for malicious actors.
Proper file validation, an understanding of the implications of default
application settings, and periodic review of system configurations are
paramount in mitigating such issues. This specific vulnerability serves
as a poignant reminder of the intricate interdependencies within
software ecosystems and the continuous vigilance required to
maintain their security and stability.

"Hadess" is a cybersecurity company focused on safeguarding digital assets
and creating a secure digital ecosystem. Our mission involves punishing hackers
and fortifying clients' defenses through innovation and expert cybersecurity
services.

HADESS
cat ~/.hadess

Email

MARKETING@HADESS.IO

Website:

WWW.HADESS.IO

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

