
HADESS WWW .HADE S S . I O

Executive Summary

hadess_security

This report outlines the findings of a comprehensive security assessment
conducted on the GL-AX1800 router manufactured by GL.iNet. The assessment
aimed to identify potential vulnerabilities and weaknesses in the device's
security measures. During the evaluation, several critical security issues were
discovered, including Cross-Site Request Forgery (CSRF), insecure file uploads,
path traversal, file overwrite leading to Remote Code Execution (RCE), and
unrestricted file access download.

Cross-Site Request Forgery (CSRF): The GL-AX1800 router is susceptible to
CSRF attacks, which allow unauthorized parties to execute unwanted
actions on behalf of authenticated users. By crafting malicious requests and
tricking users into visiting specially crafted web pages, attackers can
manipulate router settings, potentially leading to unauthorized access or
control over the device.

1.

Insecure File Uploads: The assessment revealed that the GL-AX1800 router
permits insecure file uploads without adequate validation and authorization
checks. This vulnerability allows attackers to upload malicious files, leading
to potential remote code execution or unauthorized access to sensitive
system resources.

2.

Path Traversal: The GL-AX1800 router suffers from a path traversal
vulnerability, which enables attackers to navigate outside of the intended
directory structure. This flaw can be exploited to access restricted files or
execute arbitrary code, posing a significant threat to the integrity and
confidentiality of the device and its data.

3.

File Overwrite -> Remote Code Execution (RCE): Through the combination
of insecure file uploads and file overwrite vulnerability, an attacker can
overwrite critical system files with malicious content. This scenario may
lead to remote code execution, enabling unauthorized control and
manipulation of the router's functionalities.

4.

Unrestricted File Access Download: The assessment uncovered a flaw that
allows attackers to download sensitive files or confidential data from the
GL-AX1800 router without proper authentication or authorization. This
issue poses a severe risk of data exfiltration and unauthorized access to the
device's configuration files and other critical information.

5.

Advisory
GL.iNet's GL-AX1800 router has been found to be susceptible to several critical
security vulnerabilities, which expose the device to potential attacks. These
vulnerabilities significantly expand the attack surface of the router, putting
user data, device integrity, and network security at risk. It is crucial for GL.iNet
users to be aware of these issues and take appropriate measures to protect
their devices and data.

01

The GL.iNet GL-AX1800 Router, a popular networking device known for its performance and
feature set, faces significant security challenges due to various vulnerabilities in its attack
surface. This paper examines the identified attack vectors, including Cross-Site Request Forgery
(CSRF), insecure file uploads, path traversal, file overwrite leading to Remote Code Execution
(RCE), and unrestricted file access download. The impact of these vulnerabilities is far-reaching,
potentially allowing unauthorized access, data breaches, and compromise of the router's
integrity. This research highlights the importance of addressing these vulnerabilities promptly to
safeguard users and emphasizes the need for proactive security measures in network device
design and maintenance.However, the presence of vulnerabilities in the router's attack surface
poses various risks that can impact digital risk protection in the following ways:

Data Breaches and Unauthorized Access: Exploitable vulnerabilities such as insecure file
uploads, path traversal, and unrestricted file access download can lead to unauthorized
access to sensitive data stored on the router or connected devices. In the hands of
attackers, this information can be misused, sold on the dark web, or used to compromise the
user's digital identity.

1.

Network Compromise: The combination of CSRF and file overwrite leading to RCE can allow
attackers to take control of the router, potentially hijacking the entire network. This
compromises the integrity and confidentiality of data transmitted across the network and
opens avenues for further attacks on other devices.

2.

Privacy Violation: With unrestricted access to router configurations and files, attackers can
gain access to personal information, internet browsing history, and other sensitive data,
violating the user's privacy.

3.

Malware Distribution: If an attacker gains control over the router, they may use it as a
launching point to distribute malware or launch distributed denial-of-service (DDoS) attacks,
impacting the availability and functionality of online services.

4.

Reputation Damage: A compromised router can lead to various security incidents, damaging
the reputation of both the affected individual or organization and the manufacturer, GL.iNet.
Users may lose trust in the brand and its products, impacting future sales and business
opportunities.

5.

Page 2.7

GL.iNet GL-AX1800: CVE-2023-47464

WWW.HADESS.IO

Abstract

GL-AX1800

6. Financial Loss: A successful attack on the router can lead to financial losses due to theft of
financial credentials, unauthorized purchases, or ransom demands from attackers.
7. Regulatory Compliance and Legal Consequences: Depending on the nature of the data breach
and the affected parties, non-compliance with data protection regulations could lead to legal
consequences, fines, and reputational damage.

When a software vulnerability is discovered, there is typically a race against time between the
moment it is found and the moment a patch or update is released to fix it. During this vulnerable
period, attackers can take advantage of the security hole to launch targeted attacks,
compromise systems, and potentially expose user information. Since the vulnerability is not
publicly known, it provides attackers with a significant advantage, making it challenging for users
to protect themselves proactively.

Page 2.7WWW.HADESS.IO

GL.iNet GL-AX1800: CVE-2023-47464

Technical Analysis

02

CSRF, also known as XSRF, is a severe web application security vulnerability that can lead to
account takeover and put users' sensitive information at risk. It occurs when an attacker tricks
a user's web browser into making unintended, unauthorized requests to a targeted website on
which the user is authenticated. The attacker does this by exploiting the trust relationship
between the user's browser and the website, making the browser unknowingly execute
malicious actions on behalf of the user.

How CSRF Works:
User Authentication: The victim (user) logs into a legitimate website, obtaining an active
session with a unique authentication token.

1.

Vulnerable Website: The targeted website has a vulnerability that does not require any
additional authorization checks when receiving requests from authenticated users.

2.

Crafted Malicious Request: The attacker crafts a malicious request, which can be in the
form of a URL or a hidden form submission, that performs a sensitive action on the
targeted website. For example, changing the victim's password, adding an attacker-
controlled email address, or initiating a fund transfer.

3.

User Interaction: The attacker entices the victim to click on a link or visit a malicious
website containing the crafted request. As the user's browser automatically includes any
stored authentication cookies for the targeted website, the malicious request appears
legitimate.

4.

Unintended Action: The user's browser executes the malicious request, sending the
request to the targeted website with the user's authentication credentials.

5.

Account Takeover: The targeted website, considering the request as valid because of the
presence of the user's valid authentication token, processes the malicious action. This
results in unauthorized changes to the victim's account, effectively leading to an account
takeover.

6.

Impact of CSRF Leading to Account Takeover:

CSRF attacks that lead to account takeover can have severe consequences for the victim and
the targeted website, including:

Unauthorized Access: Attackers can gain full control over the victim's account, allowing
them to access sensitive personal information, financial details, or any other stored data.

1.

Financial Loss: If the targeted website is related to financial services, attackers can
perform fraudulent transactions or unauthorized fund transfers, leading to financial loss
for the victim.

2.

Data Manipulation: Attackers can modify account settings, contact details, or other
sensitive information, causing confusion, privacy violations, or damage to the victim's
reputation.

3.

WWW.HADESS.IO

Technical Analysis

GL.iNet GL-AX1800: CVE-2023-47464

4. Identity Theft: With access to the victim's account, attackers can engage in identity theft,
impersonating the victim on the website or using their account for further malicious activities.
5. Privacy Breach: Private communications, stored documents, or personal conversations can
be exposed, compromising the victim's privacy.

Mitigation:

To protect against CSRF attacks leading to account takeover, web developers should
implement robust security measures, such as:

CSRF Tokens: Implementing CSRF tokens in web forms to ensure that requests come from
legitimate sources and not from forged ones.

1.

SameSite Attribute: Setting the SameSite attribute on cookies to restrict their usage for
cross-origin requests.

2.

Authorization Checks: Implementing additional authorization checks for sensitive actions
to ensure that users have the necessary permissions.

3.

Input Validation: Validating user input and sanitizing data to prevent the execution of
malicious code.

4.

Security Best Practices: Adhering to secure coding practices and following industry-
standard security guidelines.

5.

WWW.HADESS.IO

Victim

Attacker

Change Password

GET

POST

GL.iNet GL-AX1800: CVE-2023-47464

WWW.HADESS.IO

The vulnerable RPC endpoint does not implement proper CSRF protection, allowing an
attacker to forge malicious requests on behalf of an authenticated user, leading to
unauthorized password changes.

POST /rpc/password_change
Parameters:
old_password: [CURRENT PASSWORD]
new_password: [NEW PASSWORD]

Exploitation Steps:

Prepare the Attacker's Website:1.
The attacker creates a malicious website containing a form that looks innocent to the
target users. This form will be used to perform the password change action via the
vulnerable RPC endpoint.

Obtain Victim's Session Information:2.
The attacker lures the victim into visiting the malicious website, which triggers a hidden
request to the vulnerable RPC endpoint with the victim's session cookies automatically
attached.

Crafting the CSRF Payload:3.
Within the malicious website's form, the attacker crafts a hidden form submission to
the vulnerable RPC endpoint

GL.iNet GL-AX1800: CVE-2023-47464

The insecure file upload vulnerability is a critical security flaw found in web applications that
allow users to upload files. When the file upload functionality is not properly implemented
and lacks adequate security measures, attackers can exploit this vulnerability to upload and
execute malicious files on the server. This poses significant risks to the application and its
users, as it can lead to unauthorized access, data breaches, and even remote code execution
(RCE) on the server.

Vulnerability Details:

Missing File Type Validation:1.
Insecure file upload vulnerabilities often occur when the web application fails to
validate the file type properly. Attackers can manipulate file extensions or MIME types
to bypass checks, tricking the application into accepting malicious files.

Insufficient File Size Checks:2.
If the application does not enforce appropriate file size limits, attackers can attempt to
upload excessively large files, causing Denial of Service (DoS) attacks by consuming
server resources.

No File Content Verification:3.
Insecure file upload occurs when the application fails to verify the content of the
uploaded file. This allows attackers to disguise malicious code within the file, which can
be executed on the server or distributed to other users.

Overwriting System Files:4.
In some cases, attackers can exploit the vulnerability to upload files with names that
match critical system files, leading to file overwrites and potential RCE.

Exploitation Steps:

Identify the Vulnerable Web Application:1.
The attacker identifies a web application that allows file uploads without sufficient
security checks.

Crafting the Malicious File:2.
The attacker prepares a file containing malicious code or a shell script that can be
executed on the server.

Bypassing File Type and Size Validation:3.
If the application lacks proper validation, the attacker may rename the file extension or
manipulate the file's MIME type to bypass security checks.

Uploading the Malicious File:4.
The attacker submits the malicious file via the file upload functionality on the
vulnerable web application.

Server-side Execution:5.
If the application directly executes the uploaded file or serves it to users without
proper validation, the malicious code within the file is executed on the server.

WWW.HADESS.IO

GL.iNet GL-AX1800: CVE-2023-47464

This Proof of Concept demonstrates an insecure file upload vulnerability in a web application
that allows file uploads with an additional "path" parameter. The vulnerability arises when the
application does not properly validate the "path" parameter, leading to unauthorized file
uploads and potential remote code execution (RCE) on the server.

Vulnerable File Upload Endpoint:

POST /upload_file
Parameters:
file: [FILE CONTENT]
path: [UPLOAD DIRECTORY PATH]

WWW.HADESS.IO

Exploitation Steps:

Identify the Vulnerable Endpoint:
The attacker identifies a web application that permits file uploads and provides a
"path" parameter to specify the upload directory.

Craft the Malicious File:
The attacker prepares a file containing malicious code or a shell script that can be
executed on the server.

GL.iNet GL-AX1800: CVE-2023-47464

Choose an Upload Directory:
The attacker selects an arbitrary or sensitive directory path accessible via the "path"
parameter. For instance, a system directory or a directory containing sensitive files.

Bypass File Type Validation (Optional):
If the application performs file type validation based on the file extension, the attacker
may change the file extension or manipulate the MIME type to bypass security checks.

Uploading the Malicious File:
The attacker crafts a request to the "upload_file" endpoint, specifying the malicious file
in the "file" parameter and the target directory in the "path" parameter.

WWW.HADESS.IO

POST /upload_file
Content-Type: multipart/form-data; boundary=----WebKitFormBoundary1234567890
Content-Length: [LENGTH]

------WebKitFormBoundary1234567890
Content-Disposition: form-data; name="file"; filename="malicious_script.php"
Content-Type: application/php

[CONTENT OF MALICIOUS FILE]

------WebKitFormBoundary1234567890
Content-Disposition: form-data; name="path"

/var/www/html/uploads
------WebKitFormBoundary1234567890--

GL.iNet GL-AX1800: CVE-2023-47464

Server-side Processing:
The web application processes the request and uploads the file to the specified directory
without adequate validation.
Remote Code Execution (RCE) (Possible):
If the application directly serves or includes the uploaded file in a way that allows
execution, the malicious code within the file may be executed on the server, leading to
RCE.

Path Traversal, also known as Directory Traversal or File Path Manipulation, is a critical web
application security vulnerability that allows attackers to access files or directories outside
the intended scope. This occurs when the application does not properly validate and sanitize
user-supplied input, enabling malicious actors to traverse through the file system and access
sensitive files, configuration files, or even execute arbitrary code on the server.

Vulnerability Details: Path Traversal exploits occur when the application interacts with the file
system using user-controlled input without proper validation. The vulnerability arises due to:

Insufficient Input Validation:1.
The application does not validate or sanitize user input effectively, allowing attackers
to inject directory traversal sequences (e.g., "../") into file paths.

Improper Access Controls:2.
Weak or absent access controls on files and directories permit unauthorized access
through path manipulation.

Exploitation Steps:

Identify the Vulnerable Endpoint:1.
The attacker identifies a web application that interacts with the file system using user-
provided input without adequate validation.

Craft the Path Traversal Payload:2.
The attacker crafts a payload containing directory traversal sequences (e.g., "../") to
navigate outside the intended directory structure.

Submit the Payload:3.
The attacker sends the crafted payload as input to the vulnerable endpoint, exploiting
the lack of validation.

Traverse Through File System:4.
The application processes the payload without proper checks, enabling the attacker to
traverse through directories and access files beyond the intended scope.

WWW.HADESS.IO

GL.iNet GL-AX1800: CVE-2023-47464

The attacker crafts a request to the "upload_file" endpoint, specifying the malicious file in the
"file" parameter and the target directory in the "path" parameter.

POST /upload_file
Content-Type: multipart/form-data; boundary=----WebKitFormBoundary1234567890
Content-Length: [LENGTH]

------WebKitFormBoundary1234567890
Content-Disposition: form-data; name="file"; filename="malicious_script.php"
Content-Type: application/php

[CONTENT OF MALICIOUS FILE]

------WebKitFormBoundary1234567890
Content-Disposition: form-data; name="path"

../../../var/www/html/sensitive_directory
------WebKitFormBoundary1234567890--

WWW.HADESS.IO

GL.iNet GL-AX1800: CVE-2023-47464

File overwrite leading to Remote Code Execution (RCE) is a dangerous vulnerability that
allows attackers to modify critical files on a system and subsequently execute arbitrary code,
potentially gaining complete control over the target system. This vulnerability typically occurs
when a web application or software component fails to properly validate user input during file
operations, allowing an attacker to manipulate file paths and overwrite sensitive files with
malicious content.

Vulnerability Details: The vulnerability arises due to the following reasons:
Inadequate File Name Validation:1.

The application does not properly validate user-supplied file names, allowing attackers
to manipulate file paths and overwrite files outside the intended directory.

Lack of Access Controls:2.
Insufficient access controls permit unauthorized users to overwrite sensitive files.

Improper File Permissions:3.
Weak file permissions enable unauthorized users to modify critical files, escalating the
impact of file overwrite vulnerabilities.

Exploitation Steps:

Identify the Target File:1.
The attacker identifies a critical file on the system that can be overwritten to achieve
RCE. This could be a configuration file, executable, or any other file that the application
processes or executes.

Prepare the Malicious Payload:2.
The attacker crafts a payload containing malicious code or a shell script that they want
to execute on the target system.

WWW.HADESS.IO

GL.iNet GL-AX1800: CVE-2023-47464

Submit the Payload:
The attacker submits the payload to the vulnerable component of the application,
exploiting the lack of input validation.

Overwrite the Target File:
The application processes the payload without proper checks, allowing the attacker to
overwrite the target file with the malicious content.

Code Execution:
The overwritten file may now contain the attacker's code or script. When the
application executes or includes the file, the malicious code is executed on the system,
leading to RCE.

WWW.HADESS.IO

GL.iNet GL-AX1800: CVE-2023-47464

The Unrestricted File Download vulnerability is a security flaw in web applications that allows
attackers to download arbitrary files from the server without proper authorization or access
control. This vulnerability arises when the application does not adequately validate user-
supplied input, enabling attackers to manipulate file download URLs or parameters to retrieve
sensitive files from the server.
Vulnerability Details: The Unrestricted File Download vulnerability can occur due to the
following reasons:

Lack of Input Validation:1.
The application fails to validate user-supplied input or parameters related to file
downloads, allowing attackers to manipulate the values to access unauthorized files.

Insufficient Access Controls:2.
The application does not enforce proper access controls to restrict file downloads to
authorized users only.

Predictable File Paths:3.
The file download URLs or parameters use predictable or sequential values, making it
easier for attackers to guess and access files they should not have access to.

Exploitation Steps:

Identify the Vulnerable Endpoint:1.
The attacker identifies a web application with a file download feature that lacks proper
input validation or access controls.

Craft the Malicious Payload:2.
The attacker prepares a payload by manipulating the file download URLs or parameters
to target sensitive files on the server.

Submit the Payload:3.
The attacker sends the crafted payload to the vulnerable file download endpoint,
exploiting the lack of input validation and access controls.

Download Unauthorized Files:4.
The application processes the payload without proper checks, allowing the attacker to
download sensitive files from the server, even if they are outside the intended scope.

WWW.HADESS.IO

GL.iNet GL-AX1800: CVE-2023-47464

Conclusion
we discussed various important topics related to web application
security vulnerabilities. We covered the concepts of CSRF, insecure
file uploads, path traversal, and the impact of these vulnerabilities on
digital risk protection. Additionally, we learned about 0day exploits
and how they can expose user information.

Regarding specific vulnerabilities, we explored the dangers of CSRF
attacks and how they can lead to account takeover if not properly
mitigated. We also delved into insecure file uploads, highlighting the
risks of accepting unvalidated files and the potential for remote code
execution. Furthermore, we discussed path traversal vulnerabilities,
which allow attackers to traverse through directories and access
sensitive files outside the intended scope.

In the interest of ethical considerations, we refrained from providing
Proof of Concepts (PoCs) for malicious actions such as overwriting
files leading to remote code execution or replacing the "shadow" file.
Throughout this chat, the importance of responsible disclosure was
emphasized. It is essential to report security vulnerabilities to the
appropriate stakeholders in a responsible manner, giving them time to
address the issues and protect their users.

Overall, the knowledge shared in this chat aims to promote a deeper
understanding of web application security and encourage responsible
security practices within the cybersecurity community. As security
threats continue to evolve, continuous learning and proactive
security measures are crucial to safeguarding digital assets and
ensuring a secure online environment.

03

We are "Hadess"; A group of cyber security experts and white hat hackers who,
in addition to discovering and reporting vulnerabilities to big companies such
as Google, Apple and Twitter, have the honor of working with famous Iranian
companies over the past years. HADESS Company provides its customers with
integrated solutions in the field of cyber security, with a deep insight and
understanding of the software development process as well as the
development infrastructure.

HADESS
cat ~/.hadess

Email

MARKETING@HADESS.IO

Website:

WWW.HADESS.IO

Hadess Cyber Security Solutions is a renowned group of cyber security experts and white hat hackers. With a track record of discovering and responsibly reporting vulnerabilities to
prominent companies such as Google, Apple, and Twitter, Hadess has earned a reputation for excellence in the field of cyber security.

