
WWW .HADE S S . I OHADESS

Loaders
Unleashed
Loaders
Unleashed



Introduction
In the ever-evolving landscape of programming languages and their capabilities, one aspect
remains constant: the need for loaders. Loaders, in their various forms, play a crucial role in
software development by facilitating the execution of code from external sources. Across a
diverse spectrum of programming languages, from stalwarts like C/C++ to dynamic languages
like Python and JavaScript, loaders serve as gateways to harnessing the full potential of these
languages. In this exploration, we delve into the realm of loaders, unveiling their mechanisms,
functionalities, and nuances across different languages.

C/C++ stands as the bedrock of modern software development, and its loaders are pivotal in
linking external libraries and resources with the main program. These loaders enable seamless
integration of modules written in C/C++, enriching the application's functionality and efficiency.
Python, revered for its simplicity and versatility, offers multiple avenues for loading external
code. Through mechanisms like eval and exec, Python empowers developers to dynamically
execute snippets of code, fostering flexibility and adaptability in script execution.

The interoperability of Python extends even further with its integration into other languages like
C#. By embedding Python within C# applications, developers can leverage Python's extensive
libraries and functionalities, enriching their C# projects with additional capabilities.

PHP, a cornerstone of web development, relies on loaders to include external files and execute
dynamic code snippets. With functionalities like include and eval, PHP empowers developers to
dynamically incorporate content into their web applications, enhancing their flexibility and
responsiveness.

PowerShell, a powerful automation and scripting language in the Windows environment, offers
loaders that facilitate the execution of external scripts and commands. With functionalities like
IEX and integration into C#, PowerShell empowers developers to automate tasks and streamline
workflows across various platforms.

In the dynamic landscape of software development, the synergy between languages is crucial.
The integration of C# assemblies into PowerShell scripts and the execution of JScript within
PowerShell environments exemplify the seamless interoperability and versatility of modern
programming languages.

As a bonus, the incorporation of loaders with encoders further enhances the security and
efficiency of software deployment. By encoding loaders, developers can obfuscate their code
and mitigate potential security risks, ensuring the integrity and confidentiality of their
applications.

In conclusion, loaders serve as the linchpin of modern software development, enabling the
seamless integration and execution of external code across a myriad of programming languages.
Whether it's linking C/C++ libraries, dynamically executing Python scripts, or automating tasks
with PowerShell, loaders play a pivotal role in harnessing the full potential of programming
languages, facilitating innovation and efficiency in software development.

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.



Document info

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are
safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected.
Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats. 

At Hadess, our mission is twofold: to unleash the power of white hat hacking in punishing black
hat hackers and to fortify the digital defenses of our clients. We are committed to employing our
elite team of expert cybersecurity professionals to identify, neutralize, and bring to justice those
who seek to exploit vulnerabilities. Simultaneously, we provide comprehensive solutions and
services to protect our client's digital assets, ensuring their resilience against cyber attacks. With
an unwavering focus on integrity, innovation, and client satisfaction, we strive to be the guardian
of trust and security in the digital realm.

Security Researcher
Amir Gholizadeh (@arimaqz)

HADESS



Table of Content
C/C++

Python

 Eval

 Exec

 Python in C#

PHP

 Include

 Eval

Javascript

Ruby

 Load

 Require

Perl

 Eval

 Do

PowerShell

 IEX

 PowerShell in C#



C#

 Assembly Load

 C# in PowerShell

Bonus

 Executing JScript in PowerShell

 Loader with Encoder



This technical summary explores loaders across various
languages, highlighting their functionalities and
mechanisms.

1.

C/C++ loaders play a crucial role in linking external
libraries and resources with main programs. They
facilitate the incorporation of C/C++ modules, enhancing
application functionality and efficiency by enabling
seamless integration of external code.

2.

Python offers versatile mechanisms such as eval and exec
for dynamically executing code snippets. Additionally,
Python's integration into other languages like C# extends
its capabilities, enabling developers to embed Python
scripts within C# applications, thus leveraging Python's
extensive libraries and functionalities.

3.

PHP relies on loaders to include external files and execute
dynamic code snippets. With functionalities like include
and eval, PHP empowers developers to dynamically
incorporate content into web applications, enhancing
their flexibility and responsiveness.

4.

Javascript's loaders, including load and require, facilitate
the fetching and execution of external scripts, enabling
developers to modularize their codebase and improve
maintainability and performance in client-side scripting.

5.

Ruby's loaders, represented by load and require,
facilitate the inclusion of external modules and libraries.
These mechanisms empower developers to seamlessly
integrate external code into Ruby applications, enhancing
functionality and extensibility.

6.

7. In Perl, loaders enable the evaluation and execution of
external code snippets through mechanisms like eval and do.
This flexibility allows developers to dynamically incorporate
functionality into Perl scripts, enhancing adaptability and
efficiency.
8. PowerShell loaders, such as IEX, facilitate the execution of
external scripts and commands, enabling automation and
streamlining workflows in Windows environments.
Integration with C# further extends PowerShell's capabilities,
enabling the incorporation of C# assemblies into PowerShell
scripts for enhanced automation and versatility.
9. C# loaders, represented by assembly loading mechanisms,
enable the integration of external assemblies into C#
applications. Additionally, C# integration into PowerShell
environments enhances automation capabilities, allowing
developers to execute C# code within PowerShell scripts for
streamlined workflows.

Key Findings

As a bonus, loaders with encoders enhance security and efficiency in software deployment. By encoding loaders,
developers can obfuscate their code, mitigating security risks and ensuring the integrity and confidentiality of their
applications. Overall, loaders play a critical role in modern software development, facilitating seamless integration and
execution of external code across diverse programming languages.

Executive Summary

HADESS.IO Pwning the Domain:  Credentialess/Username



Loaders serve as indispensable tools in software development, facilitating the integration and execution of
external code across a diverse range of programming languages. From the foundational C/C++ to dynamic
languages like Python and JavaScript, loaders play a pivotal role in enhancing application functionality and
efficiency by seamlessly incorporating external resources.

Python, known for its versatility, offers mechanisms like eval and exec for dynamically executing code
snippets, while its integration into other languages like C# expands its capabilities, enabling developers to
embed Python scripts within C# applications. Similarly, PHP relies on loaders like include and eval to
incorporate external files and execute dynamic code, enhancing the flexibility and responsiveness of web
applications.

JavaScript's loaders enable the fetching and execution of external scripts, allowing developers to
modularize their codebase and improve maintainability and performance in client-side scripting.
Meanwhile, loaders in languages like Ruby and Perl provide mechanisms for seamlessly integrating external
modules and libraries, enhancing functionality and adaptability.

In addition to facilitating code execution, loaders play a crucial role in enhancing security and efficiency in
software deployment. By encoding loaders, developers can obfuscate their code and mitigate potential
security risks, ensuring the integrity and confidentiality of their applications. Overall, loaders stand as
fundamental components in modern software development, enabling seamless integration and execution
of external code across a myriad of programming languages.

Abstract

HADESS.IO

Pwning the Domain:  Credentialess/Username



Loader

HADESS.IO

Load Good or Bad Thing



Attacks

01



When developing malware/red teaming tools, it’s often needed to dynamically execute code inside a program. For
example executing python code inside a python file. The reason that it’s needed is for evasion, is because when the code is
being loaded like that, it resides in memory so AV/EDR has more overhead when examining the process. Plus it can be
encrypted/encoded and decrypted/decoded and then executed for more evasion.

HADESS.IO

We say C/C++ but it’s about loading compiled programs that are in standard PE format. There are already many programs
written to reflectively load C/C++ EXEs/DLLs. The first PoC was written by Stephen Fewers to reflectively load DLLs:
https://github.com/stephenfewer/ReflectiveDLLInjection
Other PoCs are mostly based on Stephen Fewer’s work. What we’ll discuss in this section is what reflective loading is
about. It’s about creating the PE’s structure in memory which includes imports, exports, sections and so on and then
linked together and executed in the process’s memory. It’s identical to the way Windows itself loads executables but
instead of relying on Windows to execute it for us, we implement it on our own.

C/C++

To dynamically execute python code inside python there are two ways:
 eval
 exec

Furthermore python version 2 can also be executed in C# using IronPython.

For python we are going to load this file:

Python

Eval
Eval has two methods when loading python files:

Eval: one line can be executed
Exec: multiline can be executed

Loaders Unleashed



Python2 code can be loaded in C# using IronPython to be dynamically executed:

Exec
Exec can be used to dynamically load python files:

HADESS.IO

Python in C#

And when executed:

PHP
PHP code can be executed in two ways:

 Include: to execute PHP files
 Eval: to execute PHP code

Include
To execute a PHP file one simply needs to include it:

Loaders Unleashed



Javascript code can dynamically be executed inside Javascript using the eval method which is considered dangerous a
function and rarely used:

Eval
To execute PHP code eval can be used:

HADESS.IO

Javascript

To load Ruby there are two ways::
 Load
 Require

Both of these methods execute Ruby files.

Load

Ruby

Require

Loaders Unleashed



HADESS.IO

Do
Using the do method, Perl files can be loaded using only one line:

In Perl language there are also two ways to execute Perl files:
 Eval
 Do

Eval
To load a perl file using eval it first needs to be loaded and read, and then executed:

Perl

PowerShell code can be executed using iex and in C# using the powershell engine.

IEX
One only needs to pass the powershell code to IEX to be executed:

PowerShell

Loaders Unleashed



HADESS.IO

To load PowerShell code/file inside C#, its DLL, System.Management.Automation, has to included and its engine created:

PowerShell in C#

Loaders Unleashed



HADESS.IO

C# executable file can be executed inside C# using assembly loader and C# code itself in PowerShell using Add-Type.

Assembly Load
To load the C# executable using assembly loader, it needs to be read and then an instance of the class should be created,
then the method that needs to be executed should be found and invoked:

C#

Loaders Unleashed



C# in PowerShell
The C# file that’ll be used:

HADESS.IO

And to load the C# file in PowerShell:

Loaders Unleashed



HADESS.IO

Bonus

Executing JScript in PowerShell
JScript/VisualBasic can be used using PowerShell. This enables malware authors to evade more security measures
because they are not frequently used nowadays:

As a bonus for reading till now, we’ll be writing a loader in python and also implement an encoder/decoder to encode the
python file, and then decode it when loading it giving us more a more sense of evasion:

Loader with Encoder

And this is just a dirty simple Python code prepared for this article, there are many ways to improve it further to be a
capable Python loader.

Loaders Unleashed



Conclusion
In conclusion, the exploration of loaders across various programming
languages underscores their fundamental importance in modern
software development. From C/C++ to Python, PHP, JavaScript, Ruby,
Perl, PowerShell, and C#, loaders serve as the linchpin for integrating
and executing external code seamlessly. These loaders empower
developers to enhance application functionality, flexibility, and
efficiency by incorporating external resources dynamically.

The versatility of loaders is evident in their diverse functionalities
across different languages. Whether it's dynamically executing code
snippets in Python, fetching external scripts in JavaScript, or
integrating external modules in Ruby and Perl, loaders enable
developers to modularize their codebase and improve maintainability,
performance, and adaptability.

Furthermore, loaders play a critical role in ensuring the security and
integrity of software applications. By encoding loaders, developers
can obfuscate their code and mitigate potential security risks,
safeguarding sensitive information and preserving the confidentiality
of their applications.

Overall, loaders stand as indispensable tools in the toolkit of every
software developer, facilitating the seamless integration and
execution of external code across a wide spectrum of programming
languages. As technology continues to evolve, loaders will
undoubtedly remain a cornerstone of software development,
enabling innovation, efficiency, and reliability in the creation of
diverse and sophisticated applications.



"Hadess" is a cybersecurity company focused on safeguarding digital assets
and creating a secure digital ecosystem. Our mission involves punishing hackers
and fortifying clients' defenses through innovation and expert cybersecurity
services.

HADESS
cat ~/.hadess

Email

MARKETING@HADESS.IO

Website: 

WWW.HADESS.IO

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.


